summaryrefslogtreecommitdiff
blob: 8f97e632387d53c9491bc66636a6c4a383b900bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pkgmetadata SYSTEM "http://www.gentoo.org/dtd/metadata.dtd">
<pkgmetadata>
  <maintainer>
    <email>python@gentoo.org</email>
    <name>Python</name>
  </maintainer>
  <longdescription lang="en">
Seaborn is a library for making attractive and informative statistical graphics
in Python. It is built on top of matplotlib and tightly integrated with the 
PyData stack, including support for numpy and pandas data structures and 
statistical routines from scipy and statsmodels.
	
Some of the features that seaborn offers are
	
* Several built-in themes that improve on the default matplotlib aesthetics
* Tools for choosing color palettes to make beautiful plots that reveal 
  patterns in your data
* Functions for visualizing univariate and bivariate distributions or for 
  comparing them between subsets of data
* Tools that fit and visualize linear regression models for different kinds 
  of independent and dependent variables
* Functions that visualize matrices of data and use clustering algorithms to 
  discover structure in those matrices
* A function to plot statistical timeseries data with flexible estimation and 
  representation of uncertainty around the estimate
* High-level abstractions for structuring grids of plots that let you easily 
  build complex visualizations
</longdescription>
  <upstream>
    <remote-id type="pypi">seaborne</remote-id>
    <remote-id type="github">mwaskom/seaborn</remote-id>
  </upstream>
</pkgmetadata>