aboutsummaryrefslogtreecommitdiff
blob: f698d0aa5ce4b48c8bbaeb4985228da63fafc6a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/*
   Long double expansions are
   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
   and are incorporated herein by permission of the author.  The author
   reserves the right to distribute this material elsewhere under different
   copying permissions.  These modifications are distributed here under
   the following terms:

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, see
    <https://www.gnu.org/licenses/>.  */

/* __ieee754_acosl(x)
 * Method :
 *      acos(x)  = pi/2 - asin(x)
 *      acos(-x) = pi/2 + asin(x)
 * For |x| <= 0.375
 *      acos(x) = pi/2 - asin(x)
 * Between .375 and .5 the approximation is
 *      acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x)
 * Between .5 and .625 the approximation is
 *      acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
 * For x > 0.625,
 *      acos(x) = 2 asin(sqrt((1-x)/2))
 *      computed with an extended precision square root in the leading term.
 * For x < -0.625
 *      acos(x) = pi - 2 asin(sqrt((1-|x|)/2))
 *
 * Special cases:
 *      if x is NaN, return x itself;
 *      if |x|>1, return NaN with invalid signal.
 *
 * Functions needed: sqrtl.
 */

#include <math.h>
#include <math_private.h>

static const _Float128
  one = 1,
  pio2_hi = L(1.5707963267948966192313216916397514420986),
  pio2_lo = L(4.3359050650618905123985220130216759843812E-35),

  /* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
     -0.0625 <= x <= 0.0625
     peak relative error 3.3e-35  */

  rS0 =  L(5.619049346208901520945464704848780243887E0),
  rS1 = L(-4.460504162777731472539175700169871920352E1),
  rS2 =  L(1.317669505315409261479577040530751477488E2),
  rS3 = L(-1.626532582423661989632442410808596009227E2),
  rS4 =  L(3.144806644195158614904369445440583873264E1),
  rS5 =  L(9.806674443470740708765165604769099559553E1),
  rS6 = L(-5.708468492052010816555762842394927806920E1),
  rS7 = L(-1.396540499232262112248553357962639431922E1),
  rS8 =  L(1.126243289311910363001762058295832610344E1),
  rS9 =  L(4.956179821329901954211277873774472383512E-1),
  rS10 = L(-3.313227657082367169241333738391762525780E-1),

  sS0 = L(-4.645814742084009935700221277307007679325E0),
  sS1 =  L(3.879074822457694323970438316317961918430E1),
  sS2 = L(-1.221986588013474694623973554726201001066E2),
  sS3 =  L(1.658821150347718105012079876756201905822E2),
  sS4 = L(-4.804379630977558197953176474426239748977E1),
  sS5 = L(-1.004296417397316948114344573811562952793E2),
  sS6 =  L(7.530281592861320234941101403870010111138E1),
  sS7 =  L(1.270735595411673647119592092304357226607E1),
  sS8 = L(-1.815144839646376500705105967064792930282E1),
  sS9 = L(-7.821597334910963922204235247786840828217E-2),
  /* 1.000000000000000000000000000000000000000E0 */

  acosr5625 = L(9.7338991014954640492751132535550279812151E-1),
  pimacosr5625 = L(2.1682027434402468335351320579240000860757E0),

  /* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x)
     -0.0625 <= x <= 0.0625
     peak relative error 2.1e-35  */

  P0 =  L(2.177690192235413635229046633751390484892E0),
  P1 = L(-2.848698225706605746657192566166142909573E1),
  P2 =  L(1.040076477655245590871244795403659880304E2),
  P3 = L(-1.400087608918906358323551402881238180553E2),
  P4 =  L(2.221047917671449176051896400503615543757E1),
  P5 =  L(9.643714856395587663736110523917499638702E1),
  P6 = L(-5.158406639829833829027457284942389079196E1),
  P7 = L(-1.578651828337585944715290382181219741813E1),
  P8 =  L(1.093632715903802870546857764647931045906E1),
  P9 =  L(5.448925479898460003048760932274085300103E-1),
  P10 = L(-3.315886001095605268470690485170092986337E-1),
  Q0 = L(-1.958219113487162405143608843774587557016E0),
  Q1 =  L(2.614577866876185080678907676023269360520E1),
  Q2 = L(-9.990858606464150981009763389881793660938E1),
  Q3 =  L(1.443958741356995763628660823395334281596E2),
  Q4 = L(-3.206441012484232867657763518369723873129E1),
  Q5 = L(-1.048560885341833443564920145642588991492E2),
  Q6 =  L(6.745883931909770880159915641984874746358E1),
  Q7 =  L(1.806809656342804436118449982647641392951E1),
  Q8 = L(-1.770150690652438294290020775359580915464E1),
  Q9 = L(-5.659156469628629327045433069052560211164E-1),
  /* 1.000000000000000000000000000000000000000E0 */

  acosr4375 = L(1.1179797320499710475919903296900511518755E0),
  pimacosr4375 = L(2.0236129215398221908706530535894517323217E0),

  /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
     0 <= x <= 0.5
     peak relative error 1.9e-35  */
  pS0 = L(-8.358099012470680544198472400254596543711E2),
  pS1 =  L(3.674973957689619490312782828051860366493E3),
  pS2 = L(-6.730729094812979665807581609853656623219E3),
  pS3 =  L(6.643843795209060298375552684423454077633E3),
  pS4 = L(-3.817341990928606692235481812252049415993E3),
  pS5 =  L(1.284635388402653715636722822195716476156E3),
  pS6 = L(-2.410736125231549204856567737329112037867E2),
  pS7 =  L(2.219191969382402856557594215833622156220E1),
  pS8 = L(-7.249056260830627156600112195061001036533E-1),
  pS9 =  L(1.055923570937755300061509030361395604448E-3),

  qS0 = L(-5.014859407482408326519083440151745519205E3),
  qS1 =  L(2.430653047950480068881028451580393430537E4),
  qS2 = L(-4.997904737193653607449250593976069726962E4),
  qS3 =  L(5.675712336110456923807959930107347511086E4),
  qS4 = L(-3.881523118339661268482937768522572588022E4),
  qS5 =  L(1.634202194895541569749717032234510811216E4),
  qS6 = L(-4.151452662440709301601820849901296953752E3),
  qS7 =  L(5.956050864057192019085175976175695342168E2),
  qS8 = L(-4.175375777334867025769346564600396877176E1);
  /* 1.000000000000000000000000000000000000000E0 */

_Float128
__ieee754_acosl (_Float128 x)
{
  _Float128 z, r, w, p, q, s, t, f2;
  int32_t ix, sign;
  ieee854_long_double_shape_type u;

  u.value = x;
  sign = u.parts32.w0;
  ix = sign & 0x7fffffff;
  u.parts32.w0 = ix;		/* |x| */
  if (ix >= 0x3fff0000)		/* |x| >= 1 */
    {
      if (ix == 0x3fff0000
	  && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
	{			/* |x| == 1 */
	  if ((sign & 0x80000000) == 0)
	    return 0.0;		/* acos(1) = 0  */
	  else
	    return (2.0 * pio2_hi) + (2.0 * pio2_lo);	/* acos(-1)= pi */
	}
      return (x - x) / (x - x);	/* acos(|x| > 1) is NaN */
    }
  else if (ix < 0x3ffe0000)	/* |x| < 0.5 */
    {
      if (ix < 0x3f8e0000)	/* |x| < 2**-113 */
	return pio2_hi + pio2_lo;
      if (ix < 0x3ffde000)	/* |x| < .4375 */
	{
	  /* Arcsine of x.  */
	  z = x * x;
	  p = (((((((((pS9 * z
		       + pS8) * z
		      + pS7) * z
		     + pS6) * z
		    + pS5) * z
		   + pS4) * z
		  + pS3) * z
		 + pS2) * z
		+ pS1) * z
	       + pS0) * z;
	  q = (((((((( z
		       + qS8) * z
		     + qS7) * z
		    + qS6) * z
		   + qS5) * z
		  + qS4) * z
		 + qS3) * z
		+ qS2) * z
	       + qS1) * z
	    + qS0;
	  r = x + x * p / q;
	  z = pio2_hi - (r - pio2_lo);
	  return z;
	}
      /* .4375 <= |x| < .5 */
      t = u.value - L(0.4375);
      p = ((((((((((P10 * t
		    + P9) * t
		   + P8) * t
		  + P7) * t
		 + P6) * t
		+ P5) * t
	       + P4) * t
	      + P3) * t
	     + P2) * t
	    + P1) * t
	   + P0) * t;

      q = (((((((((t
		   + Q9) * t
		  + Q8) * t
		 + Q7) * t
		+ Q6) * t
	       + Q5) * t
	      + Q4) * t
	     + Q3) * t
	    + Q2) * t
	   + Q1) * t
	+ Q0;
      r = p / q;
      if (sign & 0x80000000)
	r = pimacosr4375 - r;
      else
	r = acosr4375 + r;
      return r;
    }
  else if (ix < 0x3ffe4000)	/* |x| < 0.625 */
    {
      t = u.value - L(0.5625);
      p = ((((((((((rS10 * t
		    + rS9) * t
		   + rS8) * t
		  + rS7) * t
		 + rS6) * t
		+ rS5) * t
	       + rS4) * t
	      + rS3) * t
	     + rS2) * t
	    + rS1) * t
	   + rS0) * t;

      q = (((((((((t
		   + sS9) * t
		  + sS8) * t
		 + sS7) * t
		+ sS6) * t
	       + sS5) * t
	      + sS4) * t
	     + sS3) * t
	    + sS2) * t
	   + sS1) * t
	+ sS0;
      if (sign & 0x80000000)
	r = pimacosr5625 - p / q;
      else
	r = acosr5625 + p / q;
      return r;
    }
  else
    {				/* |x| >= .625 */
      z = (one - u.value) * 0.5;
      s = sqrtl (z);
      /* Compute an extended precision square root from
	 the Newton iteration  s -> 0.5 * (s + z / s).
	 The change w from s to the improved value is
	    w = 0.5 * (s + z / s) - s  = (s^2 + z)/2s - s = (z - s^2)/2s.
	  Express s = f1 + f2 where f1 * f1 is exactly representable.
	  w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s .
	  s + w has extended precision.  */
      u.value = s;
      u.parts32.w2 = 0;
      u.parts32.w3 = 0;
      f2 = s - u.value;
      w = z - u.value * u.value;
      w = w - 2.0 * u.value * f2;
      w = w - f2 * f2;
      w = w / (2.0 * s);
      /* Arcsine of s.  */
      p = (((((((((pS9 * z
		   + pS8) * z
		  + pS7) * z
		 + pS6) * z
		+ pS5) * z
	       + pS4) * z
	      + pS3) * z
	     + pS2) * z
	    + pS1) * z
	   + pS0) * z;
      q = (((((((( z
		   + qS8) * z
		 + qS7) * z
		+ qS6) * z
	       + qS5) * z
	      + qS4) * z
	     + qS3) * z
	    + qS2) * z
	   + qS1) * z
	+ qS0;
      r = s + (w + s * p / q);

      if (sign & 0x80000000)
	w = pio2_hi + (pio2_lo - r);
      else
	w = r;
      return 2.0 * w;
    }
}
strong_alias (__ieee754_acosl, __acosl_finite)