aboutsummaryrefslogtreecommitdiff
blob: 7031ecc3f083de65f37b26f5ea68820daf48ca54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
/* Target-struct-independent code to start (run) and stop an inferior
   process.

   Copyright (C) 1986-2013 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "gdb_string.h"
#include <ctype.h>
#include "symtab.h"
#include "frame.h"
#include "inferior.h"
#include "exceptions.h"
#include "breakpoint.h"
#include "gdb_wait.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "cli/cli-script.h"
#include "target.h"
#include "gdbthread.h"
#include "annotate.h"
#include "symfile.h"
#include "top.h"
#include <signal.h>
#include "inf-loop.h"
#include "regcache.h"
#include "value.h"
#include "observer.h"
#include "language.h"
#include "solib.h"
#include "main.h"
#include "dictionary.h"
#include "block.h"
#include "gdb_assert.h"
#include "mi/mi-common.h"
#include "event-top.h"
#include "record.h"
#include "record-full.h"
#include "inline-frame.h"
#include "jit.h"
#include "tracepoint.h"
#include "continuations.h"
#include "interps.h"
#include "skip.h"
#include "probe.h"
#include "objfiles.h"
#include "completer.h"
#include "target-descriptions.h"

/* Prototypes for local functions */

static void signals_info (char *, int);

static void handle_command (char *, int);

static void sig_print_info (enum gdb_signal);

static void sig_print_header (void);

static void resume_cleanups (void *);

static int hook_stop_stub (void *);

static int restore_selected_frame (void *);

static int follow_fork (void);

static void set_schedlock_func (char *args, int from_tty,
				struct cmd_list_element *c);

static int currently_stepping (struct thread_info *tp);

static int currently_stepping_or_nexting_callback (struct thread_info *tp,
						   void *data);

static void xdb_handle_command (char *args, int from_tty);

static int prepare_to_proceed (int);

static void print_exited_reason (int exitstatus);

static void print_signal_exited_reason (enum gdb_signal siggnal);

static void print_no_history_reason (void);

static void print_signal_received_reason (enum gdb_signal siggnal);

static void print_end_stepping_range_reason (void);

void _initialize_infrun (void);

void nullify_last_target_wait_ptid (void);

static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);

static void insert_step_resume_breakpoint_at_caller (struct frame_info *);

static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);

/* When set, stop the 'step' command if we enter a function which has
   no line number information.  The normal behavior is that we step
   over such function.  */
int step_stop_if_no_debug = 0;
static void
show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
			    struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
}

/* In asynchronous mode, but simulating synchronous execution.  */

int sync_execution = 0;

/* wait_for_inferior and normal_stop use this to notify the user
   when the inferior stopped in a different thread than it had been
   running in.  */

static ptid_t previous_inferior_ptid;

/* Default behavior is to detach newly forked processes (legacy).  */
int detach_fork = 1;

int debug_displaced = 0;
static void
show_debug_displaced (struct ui_file *file, int from_tty,
		      struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
}

unsigned int debug_infrun = 0;
static void
show_debug_infrun (struct ui_file *file, int from_tty,
		   struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
}


/* Support for disabling address space randomization.  */

int disable_randomization = 1;

static void
show_disable_randomization (struct ui_file *file, int from_tty,
			    struct cmd_list_element *c, const char *value)
{
  if (target_supports_disable_randomization ())
    fprintf_filtered (file,
		      _("Disabling randomization of debuggee's "
			"virtual address space is %s.\n"),
		      value);
  else
    fputs_filtered (_("Disabling randomization of debuggee's "
		      "virtual address space is unsupported on\n"
		      "this platform.\n"), file);
}

static void
set_disable_randomization (char *args, int from_tty,
			   struct cmd_list_element *c)
{
  if (!target_supports_disable_randomization ())
    error (_("Disabling randomization of debuggee's "
	     "virtual address space is unsupported on\n"
	     "this platform."));
}


/* If the program uses ELF-style shared libraries, then calls to
   functions in shared libraries go through stubs, which live in a
   table called the PLT (Procedure Linkage Table).  The first time the
   function is called, the stub sends control to the dynamic linker,
   which looks up the function's real address, patches the stub so
   that future calls will go directly to the function, and then passes
   control to the function.

   If we are stepping at the source level, we don't want to see any of
   this --- we just want to skip over the stub and the dynamic linker.
   The simple approach is to single-step until control leaves the
   dynamic linker.

   However, on some systems (e.g., Red Hat's 5.2 distribution) the
   dynamic linker calls functions in the shared C library, so you
   can't tell from the PC alone whether the dynamic linker is still
   running.  In this case, we use a step-resume breakpoint to get us
   past the dynamic linker, as if we were using "next" to step over a
   function call.

   in_solib_dynsym_resolve_code() says whether we're in the dynamic
   linker code or not.  Normally, this means we single-step.  However,
   if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
   address where we can place a step-resume breakpoint to get past the
   linker's symbol resolution function.

   in_solib_dynsym_resolve_code() can generally be implemented in a
   pretty portable way, by comparing the PC against the address ranges
   of the dynamic linker's sections.

   SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
   it depends on internal details of the dynamic linker.  It's usually
   not too hard to figure out where to put a breakpoint, but it
   certainly isn't portable.  SKIP_SOLIB_RESOLVER should do plenty of
   sanity checking.  If it can't figure things out, returning zero and
   getting the (possibly confusing) stepping behavior is better than
   signalling an error, which will obscure the change in the
   inferior's state.  */

/* This function returns TRUE if pc is the address of an instruction
   that lies within the dynamic linker (such as the event hook, or the
   dld itself).

   This function must be used only when a dynamic linker event has
   been caught, and the inferior is being stepped out of the hook, or
   undefined results are guaranteed.  */

#ifndef SOLIB_IN_DYNAMIC_LINKER
#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
#endif

/* "Observer mode" is somewhat like a more extreme version of
   non-stop, in which all GDB operations that might affect the
   target's execution have been disabled.  */

static int non_stop_1 = 0;

int observer_mode = 0;
static int observer_mode_1 = 0;

static void
set_observer_mode (char *args, int from_tty,
		   struct cmd_list_element *c)
{
  extern int pagination_enabled;

  if (target_has_execution)
    {
      observer_mode_1 = observer_mode;
      error (_("Cannot change this setting while the inferior is running."));
    }

  observer_mode = observer_mode_1;

  may_write_registers = !observer_mode;
  may_write_memory = !observer_mode;
  may_insert_breakpoints = !observer_mode;
  may_insert_tracepoints = !observer_mode;
  /* We can insert fast tracepoints in or out of observer mode,
     but enable them if we're going into this mode.  */
  if (observer_mode)
    may_insert_fast_tracepoints = 1;
  may_stop = !observer_mode;
  update_target_permissions ();

  /* Going *into* observer mode we must force non-stop, then
     going out we leave it that way.  */
  if (observer_mode)
    {
      target_async_permitted = 1;
      pagination_enabled = 0;
      non_stop = non_stop_1 = 1;
    }

  if (from_tty)
    printf_filtered (_("Observer mode is now %s.\n"),
		     (observer_mode ? "on" : "off"));
}

static void
show_observer_mode (struct ui_file *file, int from_tty,
		    struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Observer mode is %s.\n"), value);
}

/* This updates the value of observer mode based on changes in
   permissions.  Note that we are deliberately ignoring the values of
   may-write-registers and may-write-memory, since the user may have
   reason to enable these during a session, for instance to turn on a
   debugging-related global.  */

void
update_observer_mode (void)
{
  int newval;

  newval = (!may_insert_breakpoints
	    && !may_insert_tracepoints
	    && may_insert_fast_tracepoints
	    && !may_stop
	    && non_stop);

  /* Let the user know if things change.  */
  if (newval != observer_mode)
    printf_filtered (_("Observer mode is now %s.\n"),
		     (newval ? "on" : "off"));

  observer_mode = observer_mode_1 = newval;
}

/* Tables of how to react to signals; the user sets them.  */

static unsigned char *signal_stop;
static unsigned char *signal_print;
static unsigned char *signal_program;

/* Table of signals that are registered with "catch signal".  A
   non-zero entry indicates that the signal is caught by some "catch
   signal" command.  This has size GDB_SIGNAL_LAST, to accommodate all
   signals.  */
static unsigned char *signal_catch;

/* Table of signals that the target may silently handle.
   This is automatically determined from the flags above,
   and simply cached here.  */
static unsigned char *signal_pass;

#define SET_SIGS(nsigs,sigs,flags) \
  do { \
    int signum = (nsigs); \
    while (signum-- > 0) \
      if ((sigs)[signum]) \
	(flags)[signum] = 1; \
  } while (0)

#define UNSET_SIGS(nsigs,sigs,flags) \
  do { \
    int signum = (nsigs); \
    while (signum-- > 0) \
      if ((sigs)[signum]) \
	(flags)[signum] = 0; \
  } while (0)

/* Update the target's copy of SIGNAL_PROGRAM.  The sole purpose of
   this function is to avoid exporting `signal_program'.  */

void
update_signals_program_target (void)
{
  target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
}

/* Value to pass to target_resume() to cause all threads to resume.  */

#define RESUME_ALL minus_one_ptid

/* Command list pointer for the "stop" placeholder.  */

static struct cmd_list_element *stop_command;

/* Function inferior was in as of last step command.  */

static struct symbol *step_start_function;

/* Nonzero if we want to give control to the user when we're notified
   of shared library events by the dynamic linker.  */
int stop_on_solib_events;
static void
show_stop_on_solib_events (struct ui_file *file, int from_tty,
			   struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
		    value);
}

/* Nonzero means expecting a trace trap
   and should stop the inferior and return silently when it happens.  */

int stop_after_trap;

/* Save register contents here when executing a "finish" command or are
   about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
   Thus this contains the return value from the called function (assuming
   values are returned in a register).  */

struct regcache *stop_registers;

/* Nonzero after stop if current stack frame should be printed.  */

static int stop_print_frame;

/* This is a cached copy of the pid/waitstatus of the last event
   returned by target_wait()/deprecated_target_wait_hook().  This
   information is returned by get_last_target_status().  */
static ptid_t target_last_wait_ptid;
static struct target_waitstatus target_last_waitstatus;

static void context_switch (ptid_t ptid);

void init_thread_stepping_state (struct thread_info *tss);

static void init_infwait_state (void);

static const char follow_fork_mode_child[] = "child";
static const char follow_fork_mode_parent[] = "parent";

static const char *const follow_fork_mode_kind_names[] = {
  follow_fork_mode_child,
  follow_fork_mode_parent,
  NULL
};

static const char *follow_fork_mode_string = follow_fork_mode_parent;
static void
show_follow_fork_mode_string (struct ui_file *file, int from_tty,
			      struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Debugger response to a program "
		      "call of fork or vfork is \"%s\".\n"),
		    value);
}


/* Tell the target to follow the fork we're stopped at.  Returns true
   if the inferior should be resumed; false, if the target for some
   reason decided it's best not to resume.  */

static int
follow_fork (void)
{
  int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
  int should_resume = 1;
  struct thread_info *tp;

  /* Copy user stepping state to the new inferior thread.  FIXME: the
     followed fork child thread should have a copy of most of the
     parent thread structure's run control related fields, not just these.
     Initialized to avoid "may be used uninitialized" warnings from gcc.  */
  struct breakpoint *step_resume_breakpoint = NULL;
  struct breakpoint *exception_resume_breakpoint = NULL;
  CORE_ADDR step_range_start = 0;
  CORE_ADDR step_range_end = 0;
  struct frame_id step_frame_id = { 0 };

  if (!non_stop)
    {
      ptid_t wait_ptid;
      struct target_waitstatus wait_status;

      /* Get the last target status returned by target_wait().  */
      get_last_target_status (&wait_ptid, &wait_status);

      /* If not stopped at a fork event, then there's nothing else to
	 do.  */
      if (wait_status.kind != TARGET_WAITKIND_FORKED
	  && wait_status.kind != TARGET_WAITKIND_VFORKED)
	return 1;

      /* Check if we switched over from WAIT_PTID, since the event was
	 reported.  */
      if (!ptid_equal (wait_ptid, minus_one_ptid)
	  && !ptid_equal (inferior_ptid, wait_ptid))
	{
	  /* We did.  Switch back to WAIT_PTID thread, to tell the
	     target to follow it (in either direction).  We'll
	     afterwards refuse to resume, and inform the user what
	     happened.  */
	  switch_to_thread (wait_ptid);
	  should_resume = 0;
	}
    }

  tp = inferior_thread ();

  /* If there were any forks/vforks that were caught and are now to be
     followed, then do so now.  */
  switch (tp->pending_follow.kind)
    {
    case TARGET_WAITKIND_FORKED:
    case TARGET_WAITKIND_VFORKED:
      {
	ptid_t parent, child;

	/* If the user did a next/step, etc, over a fork call,
	   preserve the stepping state in the fork child.  */
	if (follow_child && should_resume)
	  {
	    step_resume_breakpoint = clone_momentary_breakpoint
					 (tp->control.step_resume_breakpoint);
	    step_range_start = tp->control.step_range_start;
	    step_range_end = tp->control.step_range_end;
	    step_frame_id = tp->control.step_frame_id;
	    exception_resume_breakpoint
	      = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);

	    /* For now, delete the parent's sr breakpoint, otherwise,
	       parent/child sr breakpoints are considered duplicates,
	       and the child version will not be installed.  Remove
	       this when the breakpoints module becomes aware of
	       inferiors and address spaces.  */
	    delete_step_resume_breakpoint (tp);
	    tp->control.step_range_start = 0;
	    tp->control.step_range_end = 0;
	    tp->control.step_frame_id = null_frame_id;
	    delete_exception_resume_breakpoint (tp);
	  }

	parent = inferior_ptid;
	child = tp->pending_follow.value.related_pid;

	/* Tell the target to do whatever is necessary to follow
	   either parent or child.  */
	if (target_follow_fork (follow_child))
	  {
	    /* Target refused to follow, or there's some other reason
	       we shouldn't resume.  */
	    should_resume = 0;
	  }
	else
	  {
	    /* This pending follow fork event is now handled, one way
	       or another.  The previous selected thread may be gone
	       from the lists by now, but if it is still around, need
	       to clear the pending follow request.  */
	    tp = find_thread_ptid (parent);
	    if (tp)
	      tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;

	    /* This makes sure we don't try to apply the "Switched
	       over from WAIT_PID" logic above.  */
	    nullify_last_target_wait_ptid ();

	    /* If we followed the child, switch to it...  */
	    if (follow_child)
	      {
		switch_to_thread (child);

		/* ... and preserve the stepping state, in case the
		   user was stepping over the fork call.  */
		if (should_resume)
		  {
		    tp = inferior_thread ();
		    tp->control.step_resume_breakpoint
		      = step_resume_breakpoint;
		    tp->control.step_range_start = step_range_start;
		    tp->control.step_range_end = step_range_end;
		    tp->control.step_frame_id = step_frame_id;
		    tp->control.exception_resume_breakpoint
		      = exception_resume_breakpoint;
		  }
		else
		  {
		    /* If we get here, it was because we're trying to
		       resume from a fork catchpoint, but, the user
		       has switched threads away from the thread that
		       forked.  In that case, the resume command
		       issued is most likely not applicable to the
		       child, so just warn, and refuse to resume.  */
		    warning (_("Not resuming: switched threads "
			       "before following fork child.\n"));
		  }

		/* Reset breakpoints in the child as appropriate.  */
		follow_inferior_reset_breakpoints ();
	      }
	    else
	      switch_to_thread (parent);
	  }
      }
      break;
    case TARGET_WAITKIND_SPURIOUS:
      /* Nothing to follow.  */
      break;
    default:
      internal_error (__FILE__, __LINE__,
		      "Unexpected pending_follow.kind %d\n",
		      tp->pending_follow.kind);
      break;
    }

  return should_resume;
}

void
follow_inferior_reset_breakpoints (void)
{
  struct thread_info *tp = inferior_thread ();

  /* Was there a step_resume breakpoint?  (There was if the user
     did a "next" at the fork() call.)  If so, explicitly reset its
     thread number.

     step_resumes are a form of bp that are made to be per-thread.
     Since we created the step_resume bp when the parent process
     was being debugged, and now are switching to the child process,
     from the breakpoint package's viewpoint, that's a switch of
     "threads".  We must update the bp's notion of which thread
     it is for, or it'll be ignored when it triggers.  */

  if (tp->control.step_resume_breakpoint)
    breakpoint_re_set_thread (tp->control.step_resume_breakpoint);

  if (tp->control.exception_resume_breakpoint)
    breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);

  /* Reinsert all breakpoints in the child.  The user may have set
     breakpoints after catching the fork, in which case those
     were never set in the child, but only in the parent.  This makes
     sure the inserted breakpoints match the breakpoint list.  */

  breakpoint_re_set ();
  insert_breakpoints ();
}

/* The child has exited or execed: resume threads of the parent the
   user wanted to be executing.  */

static int
proceed_after_vfork_done (struct thread_info *thread,
			  void *arg)
{
  int pid = * (int *) arg;

  if (ptid_get_pid (thread->ptid) == pid
      && is_running (thread->ptid)
      && !is_executing (thread->ptid)
      && !thread->stop_requested
      && thread->suspend.stop_signal == GDB_SIGNAL_0)
    {
      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog,
			    "infrun: resuming vfork parent thread %s\n",
			    target_pid_to_str (thread->ptid));

      switch_to_thread (thread->ptid);
      clear_proceed_status ();
      proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
    }

  return 0;
}

/* Called whenever we notice an exec or exit event, to handle
   detaching or resuming a vfork parent.  */

static void
handle_vfork_child_exec_or_exit (int exec)
{
  struct inferior *inf = current_inferior ();

  if (inf->vfork_parent)
    {
      int resume_parent = -1;

      /* This exec or exit marks the end of the shared memory region
	 between the parent and the child.  If the user wanted to
	 detach from the parent, now is the time.  */

      if (inf->vfork_parent->pending_detach)
	{
	  struct thread_info *tp;
	  struct cleanup *old_chain;
	  struct program_space *pspace;
	  struct address_space *aspace;

	  /* follow-fork child, detach-on-fork on.  */

	  inf->vfork_parent->pending_detach = 0;

	  if (!exec)
	    {
	      /* If we're handling a child exit, then inferior_ptid
		 points at the inferior's pid, not to a thread.  */
	      old_chain = save_inferior_ptid ();
	      save_current_program_space ();
	      save_current_inferior ();
	    }
	  else
	    old_chain = save_current_space_and_thread ();

	  /* We're letting loose of the parent.  */
	  tp = any_live_thread_of_process (inf->vfork_parent->pid);
	  switch_to_thread (tp->ptid);

	  /* We're about to detach from the parent, which implicitly
	     removes breakpoints from its address space.  There's a
	     catch here: we want to reuse the spaces for the child,
	     but, parent/child are still sharing the pspace at this
	     point, although the exec in reality makes the kernel give
	     the child a fresh set of new pages.  The problem here is
	     that the breakpoints module being unaware of this, would
	     likely chose the child process to write to the parent
	     address space.  Swapping the child temporarily away from
	     the spaces has the desired effect.  Yes, this is "sort
	     of" a hack.  */

	  pspace = inf->pspace;
	  aspace = inf->aspace;
	  inf->aspace = NULL;
	  inf->pspace = NULL;

	  if (debug_infrun || info_verbose)
	    {
	      target_terminal_ours ();

	      if (exec)
		fprintf_filtered (gdb_stdlog,
				  "Detaching vfork parent process "
				  "%d after child exec.\n",
				  inf->vfork_parent->pid);
	      else
		fprintf_filtered (gdb_stdlog,
				  "Detaching vfork parent process "
				  "%d after child exit.\n",
				  inf->vfork_parent->pid);
	    }

	  target_detach (NULL, 0);

	  /* Put it back.  */
	  inf->pspace = pspace;
	  inf->aspace = aspace;

	  do_cleanups (old_chain);
	}
      else if (exec)
	{
	  /* We're staying attached to the parent, so, really give the
	     child a new address space.  */
	  inf->pspace = add_program_space (maybe_new_address_space ());
	  inf->aspace = inf->pspace->aspace;
	  inf->removable = 1;
	  set_current_program_space (inf->pspace);

	  resume_parent = inf->vfork_parent->pid;

	  /* Break the bonds.  */
	  inf->vfork_parent->vfork_child = NULL;
	}
      else
	{
	  struct cleanup *old_chain;
	  struct program_space *pspace;

	  /* If this is a vfork child exiting, then the pspace and
	     aspaces were shared with the parent.  Since we're
	     reporting the process exit, we'll be mourning all that is
	     found in the address space, and switching to null_ptid,
	     preparing to start a new inferior.  But, since we don't
	     want to clobber the parent's address/program spaces, we
	     go ahead and create a new one for this exiting
	     inferior.  */

	  /* Switch to null_ptid, so that clone_program_space doesn't want
	     to read the selected frame of a dead process.  */
	  old_chain = save_inferior_ptid ();
	  inferior_ptid = null_ptid;

	  /* This inferior is dead, so avoid giving the breakpoints
	     module the option to write through to it (cloning a
	     program space resets breakpoints).  */
	  inf->aspace = NULL;
	  inf->pspace = NULL;
	  pspace = add_program_space (maybe_new_address_space ());
	  set_current_program_space (pspace);
	  inf->removable = 1;
	  inf->symfile_flags = SYMFILE_NO_READ;
	  clone_program_space (pspace, inf->vfork_parent->pspace);
	  inf->pspace = pspace;
	  inf->aspace = pspace->aspace;

	  /* Put back inferior_ptid.  We'll continue mourning this
	     inferior.  */
	  do_cleanups (old_chain);

	  resume_parent = inf->vfork_parent->pid;
	  /* Break the bonds.  */
	  inf->vfork_parent->vfork_child = NULL;
	}

      inf->vfork_parent = NULL;

      gdb_assert (current_program_space == inf->pspace);

      if (non_stop && resume_parent != -1)
	{
	  /* If the user wanted the parent to be running, let it go
	     free now.  */
	  struct cleanup *old_chain = make_cleanup_restore_current_thread ();

	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: resuming vfork parent process %d\n",
				resume_parent);

	  iterate_over_threads (proceed_after_vfork_done, &resume_parent);

	  do_cleanups (old_chain);
	}
    }
}

/* Enum strings for "set|show displaced-stepping".  */

static const char follow_exec_mode_new[] = "new";
static const char follow_exec_mode_same[] = "same";
static const char *const follow_exec_mode_names[] =
{
  follow_exec_mode_new,
  follow_exec_mode_same,
  NULL,
};

static const char *follow_exec_mode_string = follow_exec_mode_same;
static void
show_follow_exec_mode_string (struct ui_file *file, int from_tty,
			      struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"),  value);
}

/* EXECD_PATHNAME is assumed to be non-NULL.  */

static void
follow_exec (ptid_t pid, char *execd_pathname)
{
  struct thread_info *th = inferior_thread ();
  struct inferior *inf = current_inferior ();

  /* This is an exec event that we actually wish to pay attention to.
     Refresh our symbol table to the newly exec'd program, remove any
     momentary bp's, etc.

     If there are breakpoints, they aren't really inserted now,
     since the exec() transformed our inferior into a fresh set
     of instructions.

     We want to preserve symbolic breakpoints on the list, since
     we have hopes that they can be reset after the new a.out's
     symbol table is read.

     However, any "raw" breakpoints must be removed from the list
     (e.g., the solib bp's), since their address is probably invalid
     now.

     And, we DON'T want to call delete_breakpoints() here, since
     that may write the bp's "shadow contents" (the instruction
     value that was overwritten witha TRAP instruction).  Since
     we now have a new a.out, those shadow contents aren't valid.  */

  mark_breakpoints_out ();

  update_breakpoints_after_exec ();

  /* If there was one, it's gone now.  We cannot truly step-to-next
     statement through an exec().  */
  th->control.step_resume_breakpoint = NULL;
  th->control.exception_resume_breakpoint = NULL;
  th->control.step_range_start = 0;
  th->control.step_range_end = 0;

  /* The target reports the exec event to the main thread, even if
     some other thread does the exec, and even if the main thread was
     already stopped --- if debugging in non-stop mode, it's possible
     the user had the main thread held stopped in the previous image
     --- release it now.  This is the same behavior as step-over-exec
     with scheduler-locking on in all-stop mode.  */
  th->stop_requested = 0;

  /* What is this a.out's name?  */
  printf_unfiltered (_("%s is executing new program: %s\n"),
		     target_pid_to_str (inferior_ptid),
		     execd_pathname);

  /* We've followed the inferior through an exec.  Therefore, the
     inferior has essentially been killed & reborn.  */

  gdb_flush (gdb_stdout);

  breakpoint_init_inferior (inf_execd);

  if (gdb_sysroot && *gdb_sysroot)
    {
      char *name = alloca (strlen (gdb_sysroot)
			    + strlen (execd_pathname)
			    + 1);

      strcpy (name, gdb_sysroot);
      strcat (name, execd_pathname);
      execd_pathname = name;
    }

  /* Reset the shared library package.  This ensures that we get a
     shlib event when the child reaches "_start", at which point the
     dld will have had a chance to initialize the child.  */
  /* Also, loading a symbol file below may trigger symbol lookups, and
     we don't want those to be satisfied by the libraries of the
     previous incarnation of this process.  */
  no_shared_libraries (NULL, 0);

  if (follow_exec_mode_string == follow_exec_mode_new)
    {
      struct program_space *pspace;

      /* The user wants to keep the old inferior and program spaces
	 around.  Create a new fresh one, and switch to it.  */

      inf = add_inferior (current_inferior ()->pid);
      pspace = add_program_space (maybe_new_address_space ());
      inf->pspace = pspace;
      inf->aspace = pspace->aspace;

      exit_inferior_num_silent (current_inferior ()->num);

      set_current_inferior (inf);
      set_current_program_space (pspace);
    }
  else
    {
      /* The old description may no longer be fit for the new image.
	 E.g, a 64-bit process exec'ed a 32-bit process.  Clear the
	 old description; we'll read a new one below.  No need to do
	 this on "follow-exec-mode new", as the old inferior stays
	 around (its description is later cleared/refetched on
	 restart).  */
      target_clear_description ();
    }

  gdb_assert (current_program_space == inf->pspace);

  /* That a.out is now the one to use.  */
  exec_file_attach (execd_pathname, 0);

  /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
     (Position Independent Executable) main symbol file will get applied by
     solib_create_inferior_hook below.  breakpoint_re_set would fail to insert
     the breakpoints with the zero displacement.  */

  symbol_file_add (execd_pathname,
		   (inf->symfile_flags
		    | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
		   NULL, 0);

  if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
    set_initial_language ();

  /* If the target can specify a description, read it.  Must do this
     after flipping to the new executable (because the target supplied
     description must be compatible with the executable's
     architecture, and the old executable may e.g., be 32-bit, while
     the new one 64-bit), and before anything involving memory or
     registers.  */
  target_find_description ();

#ifdef SOLIB_CREATE_INFERIOR_HOOK
  SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
#else
  solib_create_inferior_hook (0);
#endif

  jit_inferior_created_hook ();

  breakpoint_re_set ();

  /* Reinsert all breakpoints.  (Those which were symbolic have
     been reset to the proper address in the new a.out, thanks
     to symbol_file_command...).  */
  insert_breakpoints ();

  /* The next resume of this inferior should bring it to the shlib
     startup breakpoints.  (If the user had also set bp's on
     "main" from the old (parent) process, then they'll auto-
     matically get reset there in the new process.).  */
}

/* Non-zero if we just simulating a single-step.  This is needed
   because we cannot remove the breakpoints in the inferior process
   until after the `wait' in `wait_for_inferior'.  */
static int singlestep_breakpoints_inserted_p = 0;

/* The thread we inserted single-step breakpoints for.  */
static ptid_t singlestep_ptid;

/* PC when we started this single-step.  */
static CORE_ADDR singlestep_pc;

/* If another thread hit the singlestep breakpoint, we save the original
   thread here so that we can resume single-stepping it later.  */
static ptid_t saved_singlestep_ptid;
static int stepping_past_singlestep_breakpoint;

/* If not equal to null_ptid, this means that after stepping over breakpoint
   is finished, we need to switch to deferred_step_ptid, and step it.

   The use case is when one thread has hit a breakpoint, and then the user 
   has switched to another thread and issued 'step'.  We need to step over
   breakpoint in the thread which hit the breakpoint, but then continue
   stepping the thread user has selected.  */
static ptid_t deferred_step_ptid;

/* Displaced stepping.  */

/* In non-stop debugging mode, we must take special care to manage
   breakpoints properly; in particular, the traditional strategy for
   stepping a thread past a breakpoint it has hit is unsuitable.
   'Displaced stepping' is a tactic for stepping one thread past a
   breakpoint it has hit while ensuring that other threads running
   concurrently will hit the breakpoint as they should.

   The traditional way to step a thread T off a breakpoint in a
   multi-threaded program in all-stop mode is as follows:

   a0) Initially, all threads are stopped, and breakpoints are not
       inserted.
   a1) We single-step T, leaving breakpoints uninserted.
   a2) We insert breakpoints, and resume all threads.

   In non-stop debugging, however, this strategy is unsuitable: we
   don't want to have to stop all threads in the system in order to
   continue or step T past a breakpoint.  Instead, we use displaced
   stepping:

   n0) Initially, T is stopped, other threads are running, and
       breakpoints are inserted.
   n1) We copy the instruction "under" the breakpoint to a separate
       location, outside the main code stream, making any adjustments
       to the instruction, register, and memory state as directed by
       T's architecture.
   n2) We single-step T over the instruction at its new location.
   n3) We adjust the resulting register and memory state as directed
       by T's architecture.  This includes resetting T's PC to point
       back into the main instruction stream.
   n4) We resume T.

   This approach depends on the following gdbarch methods:

   - gdbarch_max_insn_length and gdbarch_displaced_step_location
     indicate where to copy the instruction, and how much space must
     be reserved there.  We use these in step n1.

   - gdbarch_displaced_step_copy_insn copies a instruction to a new
     address, and makes any necessary adjustments to the instruction,
     register contents, and memory.  We use this in step n1.

   - gdbarch_displaced_step_fixup adjusts registers and memory after
     we have successfuly single-stepped the instruction, to yield the
     same effect the instruction would have had if we had executed it
     at its original address.  We use this in step n3.

   - gdbarch_displaced_step_free_closure provides cleanup.

   The gdbarch_displaced_step_copy_insn and
   gdbarch_displaced_step_fixup functions must be written so that
   copying an instruction with gdbarch_displaced_step_copy_insn,
   single-stepping across the copied instruction, and then applying
   gdbarch_displaced_insn_fixup should have the same effects on the
   thread's memory and registers as stepping the instruction in place
   would have.  Exactly which responsibilities fall to the copy and
   which fall to the fixup is up to the author of those functions.

   See the comments in gdbarch.sh for details.

   Note that displaced stepping and software single-step cannot
   currently be used in combination, although with some care I think
   they could be made to.  Software single-step works by placing
   breakpoints on all possible subsequent instructions; if the
   displaced instruction is a PC-relative jump, those breakpoints
   could fall in very strange places --- on pages that aren't
   executable, or at addresses that are not proper instruction
   boundaries.  (We do generally let other threads run while we wait
   to hit the software single-step breakpoint, and they might
   encounter such a corrupted instruction.)  One way to work around
   this would be to have gdbarch_displaced_step_copy_insn fully
   simulate the effect of PC-relative instructions (and return NULL)
   on architectures that use software single-stepping.

   In non-stop mode, we can have independent and simultaneous step
   requests, so more than one thread may need to simultaneously step
   over a breakpoint.  The current implementation assumes there is
   only one scratch space per process.  In this case, we have to
   serialize access to the scratch space.  If thread A wants to step
   over a breakpoint, but we are currently waiting for some other
   thread to complete a displaced step, we leave thread A stopped and
   place it in the displaced_step_request_queue.  Whenever a displaced
   step finishes, we pick the next thread in the queue and start a new
   displaced step operation on it.  See displaced_step_prepare and
   displaced_step_fixup for details.  */

struct displaced_step_request
{
  ptid_t ptid;
  struct displaced_step_request *next;
};

/* Per-inferior displaced stepping state.  */
struct displaced_step_inferior_state
{
  /* Pointer to next in linked list.  */
  struct displaced_step_inferior_state *next;

  /* The process this displaced step state refers to.  */
  int pid;

  /* A queue of pending displaced stepping requests.  One entry per
     thread that needs to do a displaced step.  */
  struct displaced_step_request *step_request_queue;

  /* If this is not null_ptid, this is the thread carrying out a
     displaced single-step in process PID.  This thread's state will
     require fixing up once it has completed its step.  */
  ptid_t step_ptid;

  /* The architecture the thread had when we stepped it.  */
  struct gdbarch *step_gdbarch;

  /* The closure provided gdbarch_displaced_step_copy_insn, to be used
     for post-step cleanup.  */
  struct displaced_step_closure *step_closure;

  /* The address of the original instruction, and the copy we
     made.  */
  CORE_ADDR step_original, step_copy;

  /* Saved contents of copy area.  */
  gdb_byte *step_saved_copy;
};

/* The list of states of processes involved in displaced stepping
   presently.  */
static struct displaced_step_inferior_state *displaced_step_inferior_states;

/* Get the displaced stepping state of process PID.  */

static struct displaced_step_inferior_state *
get_displaced_stepping_state (int pid)
{
  struct displaced_step_inferior_state *state;

  for (state = displaced_step_inferior_states;
       state != NULL;
       state = state->next)
    if (state->pid == pid)
      return state;

  return NULL;
}

/* Add a new displaced stepping state for process PID to the displaced
   stepping state list, or return a pointer to an already existing
   entry, if it already exists.  Never returns NULL.  */

static struct displaced_step_inferior_state *
add_displaced_stepping_state (int pid)
{
  struct displaced_step_inferior_state *state;

  for (state = displaced_step_inferior_states;
       state != NULL;
       state = state->next)
    if (state->pid == pid)
      return state;

  state = xcalloc (1, sizeof (*state));
  state->pid = pid;
  state->next = displaced_step_inferior_states;
  displaced_step_inferior_states = state;

  return state;
}

/* If inferior is in displaced stepping, and ADDR equals to starting address
   of copy area, return corresponding displaced_step_closure.  Otherwise,
   return NULL.  */

struct displaced_step_closure*
get_displaced_step_closure_by_addr (CORE_ADDR addr)
{
  struct displaced_step_inferior_state *displaced
    = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));

  /* If checking the mode of displaced instruction in copy area.  */
  if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
     && (displaced->step_copy == addr))
    return displaced->step_closure;

  return NULL;
}

/* Remove the displaced stepping state of process PID.  */

static void
remove_displaced_stepping_state (int pid)
{
  struct displaced_step_inferior_state *it, **prev_next_p;

  gdb_assert (pid != 0);

  it = displaced_step_inferior_states;
  prev_next_p = &displaced_step_inferior_states;
  while (it)
    {
      if (it->pid == pid)
	{
	  *prev_next_p = it->next;
	  xfree (it);
	  return;
	}

      prev_next_p = &it->next;
      it = *prev_next_p;
    }
}

static void
infrun_inferior_exit (struct inferior *inf)
{
  remove_displaced_stepping_state (inf->pid);
}

/* If ON, and the architecture supports it, GDB will use displaced
   stepping to step over breakpoints.  If OFF, or if the architecture
   doesn't support it, GDB will instead use the traditional
   hold-and-step approach.  If AUTO (which is the default), GDB will
   decide which technique to use to step over breakpoints depending on
   which of all-stop or non-stop mode is active --- displaced stepping
   in non-stop mode; hold-and-step in all-stop mode.  */

static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;

static void
show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
				 struct cmd_list_element *c,
				 const char *value)
{
  if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
    fprintf_filtered (file,
		      _("Debugger's willingness to use displaced stepping "
			"to step over breakpoints is %s (currently %s).\n"),
		      value, non_stop ? "on" : "off");
  else
    fprintf_filtered (file,
		      _("Debugger's willingness to use displaced stepping "
			"to step over breakpoints is %s.\n"), value);
}

/* Return non-zero if displaced stepping can/should be used to step
   over breakpoints.  */

static int
use_displaced_stepping (struct gdbarch *gdbarch)
{
  return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
	   || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
	  && gdbarch_displaced_step_copy_insn_p (gdbarch)
	  && !RECORD_IS_USED);
}

/* Clean out any stray displaced stepping state.  */
static void
displaced_step_clear (struct displaced_step_inferior_state *displaced)
{
  /* Indicate that there is no cleanup pending.  */
  displaced->step_ptid = null_ptid;

  if (displaced->step_closure)
    {
      gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
                                           displaced->step_closure);
      displaced->step_closure = NULL;
    }
}

static void
displaced_step_clear_cleanup (void *arg)
{
  struct displaced_step_inferior_state *state = arg;

  displaced_step_clear (state);
}

/* Dump LEN bytes at BUF in hex to FILE, followed by a newline.  */
void
displaced_step_dump_bytes (struct ui_file *file,
                           const gdb_byte *buf,
                           size_t len)
{
  int i;

  for (i = 0; i < len; i++)
    fprintf_unfiltered (file, "%02x ", buf[i]);
  fputs_unfiltered ("\n", file);
}

/* Prepare to single-step, using displaced stepping.

   Note that we cannot use displaced stepping when we have a signal to
   deliver.  If we have a signal to deliver and an instruction to step
   over, then after the step, there will be no indication from the
   target whether the thread entered a signal handler or ignored the
   signal and stepped over the instruction successfully --- both cases
   result in a simple SIGTRAP.  In the first case we mustn't do a
   fixup, and in the second case we must --- but we can't tell which.
   Comments in the code for 'random signals' in handle_inferior_event
   explain how we handle this case instead.

   Returns 1 if preparing was successful -- this thread is going to be
   stepped now; or 0 if displaced stepping this thread got queued.  */
static int
displaced_step_prepare (ptid_t ptid)
{
  struct cleanup *old_cleanups, *ignore_cleanups;
  struct regcache *regcache = get_thread_regcache (ptid);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  CORE_ADDR original, copy;
  ULONGEST len;
  struct displaced_step_closure *closure;
  struct displaced_step_inferior_state *displaced;
  int status;

  /* We should never reach this function if the architecture does not
     support displaced stepping.  */
  gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));

  /* We have to displaced step one thread at a time, as we only have
     access to a single scratch space per inferior.  */

  displaced = add_displaced_stepping_state (ptid_get_pid (ptid));

  if (!ptid_equal (displaced->step_ptid, null_ptid))
    {
      /* Already waiting for a displaced step to finish.  Defer this
	 request and place in queue.  */
      struct displaced_step_request *req, *new_req;

      if (debug_displaced)
	fprintf_unfiltered (gdb_stdlog,
			    "displaced: defering step of %s\n",
			    target_pid_to_str (ptid));

      new_req = xmalloc (sizeof (*new_req));
      new_req->ptid = ptid;
      new_req->next = NULL;

      if (displaced->step_request_queue)
	{
	  for (req = displaced->step_request_queue;
	       req && req->next;
	       req = req->next)
	    ;
	  req->next = new_req;
	}
      else
	displaced->step_request_queue = new_req;

      return 0;
    }
  else
    {
      if (debug_displaced)
	fprintf_unfiltered (gdb_stdlog,
			    "displaced: stepping %s now\n",
			    target_pid_to_str (ptid));
    }

  displaced_step_clear (displaced);

  old_cleanups = save_inferior_ptid ();
  inferior_ptid = ptid;

  original = regcache_read_pc (regcache);

  copy = gdbarch_displaced_step_location (gdbarch);
  len = gdbarch_max_insn_length (gdbarch);

  /* Save the original contents of the copy area.  */
  displaced->step_saved_copy = xmalloc (len);
  ignore_cleanups = make_cleanup (free_current_contents,
				  &displaced->step_saved_copy);
  status = target_read_memory (copy, displaced->step_saved_copy, len);
  if (status != 0)
    throw_error (MEMORY_ERROR,
		 _("Error accessing memory address %s (%s) for "
		   "displaced-stepping scratch space."),
		 paddress (gdbarch, copy), safe_strerror (status));
  if (debug_displaced)
    {
      fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
			  paddress (gdbarch, copy));
      displaced_step_dump_bytes (gdb_stdlog,
				 displaced->step_saved_copy,
				 len);
    };

  closure = gdbarch_displaced_step_copy_insn (gdbarch,
					      original, copy, regcache);

  /* We don't support the fully-simulated case at present.  */
  gdb_assert (closure);

  /* Save the information we need to fix things up if the step
     succeeds.  */
  displaced->step_ptid = ptid;
  displaced->step_gdbarch = gdbarch;
  displaced->step_closure = closure;
  displaced->step_original = original;
  displaced->step_copy = copy;

  make_cleanup (displaced_step_clear_cleanup, displaced);

  /* Resume execution at the copy.  */
  regcache_write_pc (regcache, copy);

  discard_cleanups (ignore_cleanups);

  do_cleanups (old_cleanups);

  if (debug_displaced)
    fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
			paddress (gdbarch, copy));

  return 1;
}

static void
write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
		   const gdb_byte *myaddr, int len)
{
  struct cleanup *ptid_cleanup = save_inferior_ptid ();

  inferior_ptid = ptid;
  write_memory (memaddr, myaddr, len);
  do_cleanups (ptid_cleanup);
}

/* Restore the contents of the copy area for thread PTID.  */

static void
displaced_step_restore (struct displaced_step_inferior_state *displaced,
			ptid_t ptid)
{
  ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);

  write_memory_ptid (ptid, displaced->step_copy,
		     displaced->step_saved_copy, len);
  if (debug_displaced)
    fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
			target_pid_to_str (ptid),
			paddress (displaced->step_gdbarch,
				  displaced->step_copy));
}

static void
displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
{
  struct cleanup *old_cleanups;
  struct displaced_step_inferior_state *displaced
    = get_displaced_stepping_state (ptid_get_pid (event_ptid));

  /* Was any thread of this process doing a displaced step?  */
  if (displaced == NULL)
    return;

  /* Was this event for the pid we displaced?  */
  if (ptid_equal (displaced->step_ptid, null_ptid)
      || ! ptid_equal (displaced->step_ptid, event_ptid))
    return;

  old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);

  displaced_step_restore (displaced, displaced->step_ptid);

  /* Did the instruction complete successfully?  */
  if (signal == GDB_SIGNAL_TRAP)
    {
      /* Fix up the resulting state.  */
      gdbarch_displaced_step_fixup (displaced->step_gdbarch,
                                    displaced->step_closure,
                                    displaced->step_original,
                                    displaced->step_copy,
                                    get_thread_regcache (displaced->step_ptid));
    }
  else
    {
      /* Since the instruction didn't complete, all we can do is
         relocate the PC.  */
      struct regcache *regcache = get_thread_regcache (event_ptid);
      CORE_ADDR pc = regcache_read_pc (regcache);

      pc = displaced->step_original + (pc - displaced->step_copy);
      regcache_write_pc (regcache, pc);
    }

  do_cleanups (old_cleanups);

  displaced->step_ptid = null_ptid;

  /* Are there any pending displaced stepping requests?  If so, run
     one now.  Leave the state object around, since we're likely to
     need it again soon.  */
  while (displaced->step_request_queue)
    {
      struct displaced_step_request *head;
      ptid_t ptid;
      struct regcache *regcache;
      struct gdbarch *gdbarch;
      CORE_ADDR actual_pc;
      struct address_space *aspace;

      head = displaced->step_request_queue;
      ptid = head->ptid;
      displaced->step_request_queue = head->next;
      xfree (head);

      context_switch (ptid);

      regcache = get_thread_regcache (ptid);
      actual_pc = regcache_read_pc (regcache);
      aspace = get_regcache_aspace (regcache);

      if (breakpoint_here_p (aspace, actual_pc))
	{
	  if (debug_displaced)
	    fprintf_unfiltered (gdb_stdlog,
				"displaced: stepping queued %s now\n",
				target_pid_to_str (ptid));

	  displaced_step_prepare (ptid);

	  gdbarch = get_regcache_arch (regcache);

	  if (debug_displaced)
	    {
	      CORE_ADDR actual_pc = regcache_read_pc (regcache);
	      gdb_byte buf[4];

	      fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
				  paddress (gdbarch, actual_pc));
	      read_memory (actual_pc, buf, sizeof (buf));
	      displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
	    }

	  if (gdbarch_displaced_step_hw_singlestep (gdbarch,
						    displaced->step_closure))
	    target_resume (ptid, 1, GDB_SIGNAL_0);
	  else
	    target_resume (ptid, 0, GDB_SIGNAL_0);

	  /* Done, we're stepping a thread.  */
	  break;
	}
      else
	{
	  int step;
	  struct thread_info *tp = inferior_thread ();

	  /* The breakpoint we were sitting under has since been
	     removed.  */
	  tp->control.trap_expected = 0;

	  /* Go back to what we were trying to do.  */
	  step = currently_stepping (tp);

	  if (debug_displaced)
	    fprintf_unfiltered (gdb_stdlog,
				"displaced: breakpoint is gone: %s, step(%d)\n",
				target_pid_to_str (tp->ptid), step);

	  target_resume (ptid, step, GDB_SIGNAL_0);
	  tp->suspend.stop_signal = GDB_SIGNAL_0;

	  /* This request was discarded.  See if there's any other
	     thread waiting for its turn.  */
	}
    }
}

/* Update global variables holding ptids to hold NEW_PTID if they were
   holding OLD_PTID.  */
static void
infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
{
  struct displaced_step_request *it;
  struct displaced_step_inferior_state *displaced;

  if (ptid_equal (inferior_ptid, old_ptid))
    inferior_ptid = new_ptid;

  if (ptid_equal (singlestep_ptid, old_ptid))
    singlestep_ptid = new_ptid;

  if (ptid_equal (deferred_step_ptid, old_ptid))
    deferred_step_ptid = new_ptid;

  for (displaced = displaced_step_inferior_states;
       displaced;
       displaced = displaced->next)
    {
      if (ptid_equal (displaced->step_ptid, old_ptid))
	displaced->step_ptid = new_ptid;

      for (it = displaced->step_request_queue; it; it = it->next)
	if (ptid_equal (it->ptid, old_ptid))
	  it->ptid = new_ptid;
    }
}


/* Resuming.  */

/* Things to clean up if we QUIT out of resume ().  */
static void
resume_cleanups (void *ignore)
{
  normal_stop ();
}

static const char schedlock_off[] = "off";
static const char schedlock_on[] = "on";
static const char schedlock_step[] = "step";
static const char *const scheduler_enums[] = {
  schedlock_off,
  schedlock_on,
  schedlock_step,
  NULL
};
static const char *scheduler_mode = schedlock_off;
static void
show_scheduler_mode (struct ui_file *file, int from_tty,
		     struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Mode for locking scheduler "
		      "during execution is \"%s\".\n"),
		    value);
}

static void
set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
{
  if (!target_can_lock_scheduler)
    {
      scheduler_mode = schedlock_off;
      error (_("Target '%s' cannot support this command."), target_shortname);
    }
}

/* True if execution commands resume all threads of all processes by
   default; otherwise, resume only threads of the current inferior
   process.  */
int sched_multi = 0;

/* Try to setup for software single stepping over the specified location.
   Return 1 if target_resume() should use hardware single step.

   GDBARCH the current gdbarch.
   PC the location to step over.  */

static int
maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  int hw_step = 1;

  if (execution_direction == EXEC_FORWARD
      && gdbarch_software_single_step_p (gdbarch)
      && gdbarch_software_single_step (gdbarch, get_current_frame ()))
    {
      hw_step = 0;
      /* Do not pull these breakpoints until after a `wait' in
	 `wait_for_inferior'.  */
      singlestep_breakpoints_inserted_p = 1;
      singlestep_ptid = inferior_ptid;
      singlestep_pc = pc;
    }
  return hw_step;
}

/* Return a ptid representing the set of threads that we will proceed,
   in the perspective of the user/frontend.  We may actually resume
   fewer threads at first, e.g., if a thread is stopped at a
   breakpoint that needs stepping-off, but that should not be visible
   to the user/frontend, and neither should the frontend/user be
   allowed to proceed any of the threads that happen to be stopped for
   internal run control handling, if a previous command wanted them
   resumed.  */

ptid_t
user_visible_resume_ptid (int step)
{
  /* By default, resume all threads of all processes.  */
  ptid_t resume_ptid = RESUME_ALL;

  /* Maybe resume only all threads of the current process.  */
  if (!sched_multi && target_supports_multi_process ())
    {
      resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
    }

  /* Maybe resume a single thread after all.  */
  if (non_stop)
    {
      /* With non-stop mode on, threads are always handled
	 individually.  */
      resume_ptid = inferior_ptid;
    }
  else if ((scheduler_mode == schedlock_on)
	   || (scheduler_mode == schedlock_step
	       && (step || singlestep_breakpoints_inserted_p)))
    {
      /* User-settable 'scheduler' mode requires solo thread resume.  */
      resume_ptid = inferior_ptid;
    }

  return resume_ptid;
}

/* Resume the inferior, but allow a QUIT.  This is useful if the user
   wants to interrupt some lengthy single-stepping operation
   (for child processes, the SIGINT goes to the inferior, and so
   we get a SIGINT random_signal, but for remote debugging and perhaps
   other targets, that's not true).

   STEP nonzero if we should step (zero to continue instead).
   SIG is the signal to give the inferior (zero for none).  */
void
resume (int step, enum gdb_signal sig)
{
  int should_resume = 1;
  struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
  struct regcache *regcache = get_current_regcache ();
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct thread_info *tp = inferior_thread ();
  CORE_ADDR pc = regcache_read_pc (regcache);
  struct address_space *aspace = get_regcache_aspace (regcache);

  QUIT;

  if (current_inferior ()->waiting_for_vfork_done)
    {
      /* Don't try to single-step a vfork parent that is waiting for
	 the child to get out of the shared memory region (by exec'ing
	 or exiting).  This is particularly important on software
	 single-step archs, as the child process would trip on the
	 software single step breakpoint inserted for the parent
	 process.  Since the parent will not actually execute any
	 instruction until the child is out of the shared region (such
	 are vfork's semantics), it is safe to simply continue it.
	 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
	 the parent, and tell it to `keep_going', which automatically
	 re-sets it stepping.  */
      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog,
			    "infrun: resume : clear step\n");
      step = 0;
    }

  if (debug_infrun)
    fprintf_unfiltered (gdb_stdlog,
                        "infrun: resume (step=%d, signal=%d), "
			"trap_expected=%d, current thread [%s] at %s\n",
 			step, sig, tp->control.trap_expected,
			target_pid_to_str (inferior_ptid),
			paddress (gdbarch, pc));

  /* Normally, by the time we reach `resume', the breakpoints are either
     removed or inserted, as appropriate.  The exception is if we're sitting
     at a permanent breakpoint; we need to step over it, but permanent
     breakpoints can't be removed.  So we have to test for it here.  */
  if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
    {
      if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
	gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
      else
	error (_("\
The program is stopped at a permanent breakpoint, but GDB does not know\n\
how to step past a permanent breakpoint on this architecture.  Try using\n\
a command like `return' or `jump' to continue execution."));
    }

  /* If enabled, step over breakpoints by executing a copy of the
     instruction at a different address.

     We can't use displaced stepping when we have a signal to deliver;
     the comments for displaced_step_prepare explain why.  The
     comments in the handle_inferior event for dealing with 'random
     signals' explain what we do instead.

     We can't use displaced stepping when we are waiting for vfork_done
     event, displaced stepping breaks the vfork child similarly as single
     step software breakpoint.  */
  if (use_displaced_stepping (gdbarch)
      && (tp->control.trap_expected
	  || (step && gdbarch_software_single_step_p (gdbarch)))
      && sig == GDB_SIGNAL_0
      && !current_inferior ()->waiting_for_vfork_done)
    {
      struct displaced_step_inferior_state *displaced;

      if (!displaced_step_prepare (inferior_ptid))
	{
	  /* Got placed in displaced stepping queue.  Will be resumed
	     later when all the currently queued displaced stepping
	     requests finish.  The thread is not executing at this point,
	     and the call to set_executing will be made later.  But we
	     need to call set_running here, since from frontend point of view,
	     the thread is running.  */
	  set_running (inferior_ptid, 1);
	  discard_cleanups (old_cleanups);
	  return;
	}

      /* Update pc to reflect the new address from which we will execute
	 instructions due to displaced stepping.  */
      pc = regcache_read_pc (get_thread_regcache (inferior_ptid));

      displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
      step = gdbarch_displaced_step_hw_singlestep (gdbarch,
						   displaced->step_closure);
    }

  /* Do we need to do it the hard way, w/temp breakpoints?  */
  else if (step)
    step = maybe_software_singlestep (gdbarch, pc);

  /* Currently, our software single-step implementation leads to different
     results than hardware single-stepping in one situation: when stepping
     into delivering a signal which has an associated signal handler,
     hardware single-step will stop at the first instruction of the handler,
     while software single-step will simply skip execution of the handler.

     For now, this difference in behavior is accepted since there is no
     easy way to actually implement single-stepping into a signal handler
     without kernel support.

     However, there is one scenario where this difference leads to follow-on
     problems: if we're stepping off a breakpoint by removing all breakpoints
     and then single-stepping.  In this case, the software single-step
     behavior means that even if there is a *breakpoint* in the signal
     handler, GDB still would not stop.

     Fortunately, we can at least fix this particular issue.  We detect
     here the case where we are about to deliver a signal while software
     single-stepping with breakpoints removed.  In this situation, we
     revert the decisions to remove all breakpoints and insert single-
     step breakpoints, and instead we install a step-resume breakpoint
     at the current address, deliver the signal without stepping, and
     once we arrive back at the step-resume breakpoint, actually step
     over the breakpoint we originally wanted to step over.  */
  if (singlestep_breakpoints_inserted_p
      && tp->control.trap_expected && sig != GDB_SIGNAL_0)
    {
      /* If we have nested signals or a pending signal is delivered
	 immediately after a handler returns, might might already have
	 a step-resume breakpoint set on the earlier handler.  We cannot
	 set another step-resume breakpoint; just continue on until the
	 original breakpoint is hit.  */
      if (tp->control.step_resume_breakpoint == NULL)
	{
	  insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
	  tp->step_after_step_resume_breakpoint = 1;
	}

      remove_single_step_breakpoints ();
      singlestep_breakpoints_inserted_p = 0;

      insert_breakpoints ();
      tp->control.trap_expected = 0;
    }

  if (should_resume)
    {
      ptid_t resume_ptid;

      /* If STEP is set, it's a request to use hardware stepping
	 facilities.  But in that case, we should never
	 use singlestep breakpoint.  */
      gdb_assert (!(singlestep_breakpoints_inserted_p && step));

      /* Decide the set of threads to ask the target to resume.  Start
	 by assuming everything will be resumed, than narrow the set
	 by applying increasingly restricting conditions.  */
      resume_ptid = user_visible_resume_ptid (step);

      /* Maybe resume a single thread after all.  */
      if (singlestep_breakpoints_inserted_p
	  && stepping_past_singlestep_breakpoint)
	{
	  /* The situation here is as follows.  In thread T1 we wanted to
	     single-step.  Lacking hardware single-stepping we've
	     set breakpoint at the PC of the next instruction -- call it
	     P.  After resuming, we've hit that breakpoint in thread T2.
	     Now we've removed original breakpoint, inserted breakpoint
	     at P+1, and try to step to advance T2 past breakpoint.
	     We need to step only T2, as if T1 is allowed to freely run,
	     it can run past P, and if other threads are allowed to run,
	     they can hit breakpoint at P+1, and nested hits of single-step
	     breakpoints is not something we'd want -- that's complicated
	     to support, and has no value.  */
	  resume_ptid = inferior_ptid;
	}
      else if ((step || singlestep_breakpoints_inserted_p)
	       && tp->control.trap_expected)
	{
	  /* We're allowing a thread to run past a breakpoint it has
	     hit, by single-stepping the thread with the breakpoint
	     removed.  In which case, we need to single-step only this
	     thread, and keep others stopped, as they can miss this
	     breakpoint if allowed to run.

	     The current code actually removes all breakpoints when
	     doing this, not just the one being stepped over, so if we
	     let other threads run, we can actually miss any
	     breakpoint, not just the one at PC.  */
	  resume_ptid = inferior_ptid;
	}

      if (gdbarch_cannot_step_breakpoint (gdbarch))
	{
	  /* Most targets can step a breakpoint instruction, thus
	     executing it normally.  But if this one cannot, just
	     continue and we will hit it anyway.  */
	  if (step && breakpoint_inserted_here_p (aspace, pc))
	    step = 0;
	}

      if (debug_displaced
          && use_displaced_stepping (gdbarch)
          && tp->control.trap_expected)
        {
	  struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
	  struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
          CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
          gdb_byte buf[4];

          fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
                              paddress (resume_gdbarch, actual_pc));
          read_memory (actual_pc, buf, sizeof (buf));
          displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
        }

      /* Install inferior's terminal modes.  */
      target_terminal_inferior ();

      /* Avoid confusing the next resume, if the next stop/resume
	 happens to apply to another thread.  */
      tp->suspend.stop_signal = GDB_SIGNAL_0;

      /* Advise target which signals may be handled silently.  If we have
	 removed breakpoints because we are stepping over one (which can
	 happen only if we are not using displaced stepping), we need to
	 receive all signals to avoid accidentally skipping a breakpoint
	 during execution of a signal handler.  */
      if ((step || singlestep_breakpoints_inserted_p)
	  && tp->control.trap_expected
	  && !use_displaced_stepping (gdbarch))
	target_pass_signals (0, NULL);
      else
	target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);

      target_resume (resume_ptid, step, sig);
    }

  discard_cleanups (old_cleanups);
}

/* Proceeding.  */

/* Clear out all variables saying what to do when inferior is continued.
   First do this, then set the ones you want, then call `proceed'.  */

static void
clear_proceed_status_thread (struct thread_info *tp)
{
  if (debug_infrun)
    fprintf_unfiltered (gdb_stdlog,
			"infrun: clear_proceed_status_thread (%s)\n",
			target_pid_to_str (tp->ptid));

  tp->control.trap_expected = 0;
  tp->control.step_range_start = 0;
  tp->control.step_range_end = 0;
  tp->control.step_frame_id = null_frame_id;
  tp->control.step_stack_frame_id = null_frame_id;
  tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
  tp->stop_requested = 0;

  tp->control.stop_step = 0;

  tp->control.proceed_to_finish = 0;

  /* Discard any remaining commands or status from previous stop.  */
  bpstat_clear (&tp->control.stop_bpstat);
}

static int
clear_proceed_status_callback (struct thread_info *tp, void *data)
{
  if (is_exited (tp->ptid))
    return 0;

  clear_proceed_status_thread (tp);
  return 0;
}

void
clear_proceed_status (void)
{
  if (!non_stop)
    {
      /* In all-stop mode, delete the per-thread status of all
	 threads, even if inferior_ptid is null_ptid, there may be
	 threads on the list.  E.g., we may be launching a new
	 process, while selecting the executable.  */
      iterate_over_threads (clear_proceed_status_callback, NULL);
    }

  if (!ptid_equal (inferior_ptid, null_ptid))
    {
      struct inferior *inferior;

      if (non_stop)
	{
	  /* If in non-stop mode, only delete the per-thread status of
	     the current thread.  */
	  clear_proceed_status_thread (inferior_thread ());
	}

      inferior = current_inferior ();
      inferior->control.stop_soon = NO_STOP_QUIETLY;
    }

  stop_after_trap = 0;

  observer_notify_about_to_proceed ();

  if (stop_registers)
    {
      regcache_xfree (stop_registers);
      stop_registers = NULL;
    }
}

/* Check the current thread against the thread that reported the most recent
   event.  If a step-over is required return TRUE and set the current thread
   to the old thread.  Otherwise return FALSE.

   This should be suitable for any targets that support threads.  */

static int
prepare_to_proceed (int step)
{
  ptid_t wait_ptid;
  struct target_waitstatus wait_status;
  int schedlock_enabled;

  /* With non-stop mode on, threads are always handled individually.  */
  gdb_assert (! non_stop);

  /* Get the last target status returned by target_wait().  */
  get_last_target_status (&wait_ptid, &wait_status);

  /* Make sure we were stopped at a breakpoint.  */
  if (wait_status.kind != TARGET_WAITKIND_STOPPED
      || (wait_status.value.sig != GDB_SIGNAL_TRAP
	  && wait_status.value.sig != GDB_SIGNAL_ILL
	  && wait_status.value.sig != GDB_SIGNAL_SEGV
	  && wait_status.value.sig != GDB_SIGNAL_EMT))
    {
      return 0;
    }

  schedlock_enabled = (scheduler_mode == schedlock_on
		       || (scheduler_mode == schedlock_step
			   && step));

  /* Don't switch over to WAIT_PTID if scheduler locking is on.  */
  if (schedlock_enabled)
    return 0;

  /* Don't switch over if we're about to resume some other process
     other than WAIT_PTID's, and schedule-multiple is off.  */
  if (!sched_multi
      && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
    return 0;

  /* Switched over from WAIT_PID.  */
  if (!ptid_equal (wait_ptid, minus_one_ptid)
      && !ptid_equal (inferior_ptid, wait_ptid))
    {
      struct regcache *regcache = get_thread_regcache (wait_ptid);

      if (breakpoint_here_p (get_regcache_aspace (regcache),
			     regcache_read_pc (regcache)))
	{
	  /* If stepping, remember current thread to switch back to.  */
	  if (step)
	    deferred_step_ptid = inferior_ptid;

	  /* Switch back to WAIT_PID thread.  */
	  switch_to_thread (wait_ptid);

	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: prepare_to_proceed (step=%d), "
				"switched to [%s]\n",
				step, target_pid_to_str (inferior_ptid));

	  /* We return 1 to indicate that there is a breakpoint here,
	     so we need to step over it before continuing to avoid
	     hitting it straight away.  */
	  return 1;
	}
    }

  return 0;
}

/* Basic routine for continuing the program in various fashions.

   ADDR is the address to resume at, or -1 for resume where stopped.
   SIGGNAL is the signal to give it, or 0 for none,
   or -1 for act according to how it stopped.
   STEP is nonzero if should trap after one instruction.
   -1 means return after that and print nothing.
   You should probably set various step_... variables
   before calling here, if you are stepping.

   You should call clear_proceed_status before calling proceed.  */

void
proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
{
  struct regcache *regcache;
  struct gdbarch *gdbarch;
  struct thread_info *tp;
  CORE_ADDR pc;
  struct address_space *aspace;
  /* GDB may force the inferior to step due to various reasons.  */
  int force_step = 0;

  /* If we're stopped at a fork/vfork, follow the branch set by the
     "set follow-fork-mode" command; otherwise, we'll just proceed
     resuming the current thread.  */
  if (!follow_fork ())
    {
      /* The target for some reason decided not to resume.  */
      normal_stop ();
      if (target_can_async_p ())
	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
      return;
    }

  /* We'll update this if & when we switch to a new thread.  */
  previous_inferior_ptid = inferior_ptid;

  regcache = get_current_regcache ();
  gdbarch = get_regcache_arch (regcache);
  aspace = get_regcache_aspace (regcache);
  pc = regcache_read_pc (regcache);

  if (step > 0)
    step_start_function = find_pc_function (pc);
  if (step < 0)
    stop_after_trap = 1;

  if (addr == (CORE_ADDR) -1)
    {
      if (pc == stop_pc && breakpoint_here_p (aspace, pc)
	  && execution_direction != EXEC_REVERSE)
	/* There is a breakpoint at the address we will resume at,
	   step one instruction before inserting breakpoints so that
	   we do not stop right away (and report a second hit at this
	   breakpoint).

	   Note, we don't do this in reverse, because we won't
	   actually be executing the breakpoint insn anyway.
	   We'll be (un-)executing the previous instruction.  */

	force_step = 1;
      else if (gdbarch_single_step_through_delay_p (gdbarch)
	       && gdbarch_single_step_through_delay (gdbarch,
						     get_current_frame ()))
	/* We stepped onto an instruction that needs to be stepped
	   again before re-inserting the breakpoint, do so.  */
	force_step = 1;
    }
  else
    {
      regcache_write_pc (regcache, addr);
    }

  if (debug_infrun)
    fprintf_unfiltered (gdb_stdlog,
			"infrun: proceed (addr=%s, signal=%d, step=%d)\n",
			paddress (gdbarch, addr), siggnal, step);

  if (non_stop)
    /* In non-stop, each thread is handled individually.  The context
       must already be set to the right thread here.  */
    ;
  else
    {
      /* In a multi-threaded task we may select another thread and
	 then continue or step.

	 But if the old thread was stopped at a breakpoint, it will
	 immediately cause another breakpoint stop without any
	 execution (i.e. it will report a breakpoint hit incorrectly).
	 So we must step over it first.

	 prepare_to_proceed checks the current thread against the
	 thread that reported the most recent event.  If a step-over
	 is required it returns TRUE and sets the current thread to
	 the old thread.  */
      if (prepare_to_proceed (step))
	force_step = 1;
    }

  /* prepare_to_proceed may change the current thread.  */
  tp = inferior_thread ();

  if (force_step)
    {
      tp->control.trap_expected = 1;
      /* If displaced stepping is enabled, we can step over the
	 breakpoint without hitting it, so leave all breakpoints
	 inserted.  Otherwise we need to disable all breakpoints, step
	 one instruction, and then re-add them when that step is
	 finished.  */
      if (!use_displaced_stepping (gdbarch))
	remove_breakpoints ();
    }

  /* We can insert breakpoints if we're not trying to step over one,
     or if we are stepping over one but we're using displaced stepping
     to do so.  */
  if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
    insert_breakpoints ();

  if (!non_stop)
    {
      /* Pass the last stop signal to the thread we're resuming,
	 irrespective of whether the current thread is the thread that
	 got the last event or not.  This was historically GDB's
	 behaviour before keeping a stop_signal per thread.  */

      struct thread_info *last_thread;
      ptid_t last_ptid;
      struct target_waitstatus last_status;

      get_last_target_status (&last_ptid, &last_status);
      if (!ptid_equal (inferior_ptid, last_ptid)
	  && !ptid_equal (last_ptid, null_ptid)
	  && !ptid_equal (last_ptid, minus_one_ptid))
	{
	  last_thread = find_thread_ptid (last_ptid);
	  if (last_thread)
	    {
	      tp->suspend.stop_signal = last_thread->suspend.stop_signal;
	      last_thread->suspend.stop_signal = GDB_SIGNAL_0;
	    }
	}
    }

  if (siggnal != GDB_SIGNAL_DEFAULT)
    tp->suspend.stop_signal = siggnal;
  /* If this signal should not be seen by program,
     give it zero.  Used for debugging signals.  */
  else if (!signal_program[tp->suspend.stop_signal])
    tp->suspend.stop_signal = GDB_SIGNAL_0;

  annotate_starting ();

  /* Make sure that output from GDB appears before output from the
     inferior.  */
  gdb_flush (gdb_stdout);

  /* Refresh prev_pc value just prior to resuming.  This used to be
     done in stop_stepping, however, setting prev_pc there did not handle
     scenarios such as inferior function calls or returning from
     a function via the return command.  In those cases, the prev_pc
     value was not set properly for subsequent commands.  The prev_pc value 
     is used to initialize the starting line number in the ecs.  With an 
     invalid value, the gdb next command ends up stopping at the position
     represented by the next line table entry past our start position.
     On platforms that generate one line table entry per line, this
     is not a problem.  However, on the ia64, the compiler generates
     extraneous line table entries that do not increase the line number.
     When we issue the gdb next command on the ia64 after an inferior call
     or a return command, we often end up a few instructions forward, still 
     within the original line we started.

     An attempt was made to refresh the prev_pc at the same time the
     execution_control_state is initialized (for instance, just before
     waiting for an inferior event).  But this approach did not work
     because of platforms that use ptrace, where the pc register cannot
     be read unless the inferior is stopped.  At that point, we are not
     guaranteed the inferior is stopped and so the regcache_read_pc() call
     can fail.  Setting the prev_pc value here ensures the value is updated
     correctly when the inferior is stopped.  */
  tp->prev_pc = regcache_read_pc (get_current_regcache ());

  /* Fill in with reasonable starting values.  */
  init_thread_stepping_state (tp);

  /* Reset to normal state.  */
  init_infwait_state ();

  /* Resume inferior.  */
  resume (force_step || step || bpstat_should_step (),
	  tp->suspend.stop_signal);

  /* Wait for it to stop (if not standalone)
     and in any case decode why it stopped, and act accordingly.  */
  /* Do this only if we are not using the event loop, or if the target
     does not support asynchronous execution.  */
  if (!target_can_async_p ())
    {
      wait_for_inferior ();
      normal_stop ();
    }
}


/* Start remote-debugging of a machine over a serial link.  */

void
start_remote (int from_tty)
{
  struct inferior *inferior;

  inferior = current_inferior ();
  inferior->control.stop_soon = STOP_QUIETLY_REMOTE;

  /* Always go on waiting for the target, regardless of the mode.  */
  /* FIXME: cagney/1999-09-23: At present it isn't possible to
     indicate to wait_for_inferior that a target should timeout if
     nothing is returned (instead of just blocking).  Because of this,
     targets expecting an immediate response need to, internally, set
     things up so that the target_wait() is forced to eventually
     timeout.  */
  /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
     differentiate to its caller what the state of the target is after
     the initial open has been performed.  Here we're assuming that
     the target has stopped.  It should be possible to eventually have
     target_open() return to the caller an indication that the target
     is currently running and GDB state should be set to the same as
     for an async run.  */
  wait_for_inferior ();

  /* Now that the inferior has stopped, do any bookkeeping like
     loading shared libraries.  We want to do this before normal_stop,
     so that the displayed frame is up to date.  */
  post_create_inferior (&current_target, from_tty);

  normal_stop ();
}

/* Initialize static vars when a new inferior begins.  */

void
init_wait_for_inferior (void)
{
  /* These are meaningless until the first time through wait_for_inferior.  */

  breakpoint_init_inferior (inf_starting);

  clear_proceed_status ();

  stepping_past_singlestep_breakpoint = 0;
  deferred_step_ptid = null_ptid;

  target_last_wait_ptid = minus_one_ptid;

  previous_inferior_ptid = inferior_ptid;
  init_infwait_state ();

  /* Discard any skipped inlined frames.  */
  clear_inline_frame_state (minus_one_ptid);
}


/* This enum encodes possible reasons for doing a target_wait, so that
   wfi can call target_wait in one place.  (Ultimately the call will be
   moved out of the infinite loop entirely.) */

enum infwait_states
{
  infwait_normal_state,
  infwait_thread_hop_state,
  infwait_step_watch_state,
  infwait_nonstep_watch_state
};

/* The PTID we'll do a target_wait on.*/
ptid_t waiton_ptid;

/* Current inferior wait state.  */
static enum infwait_states infwait_state;

/* Data to be passed around while handling an event.  This data is
   discarded between events.  */
struct execution_control_state
{
  ptid_t ptid;
  /* The thread that got the event, if this was a thread event; NULL
     otherwise.  */
  struct thread_info *event_thread;

  struct target_waitstatus ws;
  int random_signal;
  int stop_func_filled_in;
  CORE_ADDR stop_func_start;
  CORE_ADDR stop_func_end;
  const char *stop_func_name;
  int wait_some_more;
};

static void handle_inferior_event (struct execution_control_state *ecs);

static void handle_step_into_function (struct gdbarch *gdbarch,
				       struct execution_control_state *ecs);
static void handle_step_into_function_backward (struct gdbarch *gdbarch,
						struct execution_control_state *ecs);
static void check_exception_resume (struct execution_control_state *,
				    struct frame_info *);

static void stop_stepping (struct execution_control_state *ecs);
static void prepare_to_wait (struct execution_control_state *ecs);
static void keep_going (struct execution_control_state *ecs);

/* Callback for iterate over threads.  If the thread is stopped, but
   the user/frontend doesn't know about that yet, go through
   normal_stop, as if the thread had just stopped now.  ARG points at
   a ptid.  If PTID is MINUS_ONE_PTID, applies to all threads.  If
   ptid_is_pid(PTID) is true, applies to all threads of the process
   pointed at by PTID.  Otherwise, apply only to the thread pointed by
   PTID.  */

static int
infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
{
  ptid_t ptid = * (ptid_t *) arg;

  if ((ptid_equal (info->ptid, ptid)
       || ptid_equal (minus_one_ptid, ptid)
       || (ptid_is_pid (ptid)
	   && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
      && is_running (info->ptid)
      && !is_executing (info->ptid))
    {
      struct cleanup *old_chain;
      struct execution_control_state ecss;
      struct execution_control_state *ecs = &ecss;

      memset (ecs, 0, sizeof (*ecs));

      old_chain = make_cleanup_restore_current_thread ();

      /* Go through handle_inferior_event/normal_stop, so we always
	 have consistent output as if the stop event had been
	 reported.  */
      ecs->ptid = info->ptid;
      ecs->event_thread = find_thread_ptid (info->ptid);
      ecs->ws.kind = TARGET_WAITKIND_STOPPED;
      ecs->ws.value.sig = GDB_SIGNAL_0;

      handle_inferior_event (ecs);

      if (!ecs->wait_some_more)
	{
	  struct thread_info *tp;

	  normal_stop ();

	  /* Finish off the continuations.  */
	  tp = inferior_thread ();
	  do_all_intermediate_continuations_thread (tp, 1);
	  do_all_continuations_thread (tp, 1);
	}

      do_cleanups (old_chain);
    }

  return 0;
}

/* This function is attached as a "thread_stop_requested" observer.
   Cleanup local state that assumed the PTID was to be resumed, and
   report the stop to the frontend.  */

static void
infrun_thread_stop_requested (ptid_t ptid)
{
  struct displaced_step_inferior_state *displaced;

  /* PTID was requested to stop.  Remove it from the displaced
     stepping queue, so we don't try to resume it automatically.  */

  for (displaced = displaced_step_inferior_states;
       displaced;
       displaced = displaced->next)
    {
      struct displaced_step_request *it, **prev_next_p;

      it = displaced->step_request_queue;
      prev_next_p = &displaced->step_request_queue;
      while (it)
	{
	  if (ptid_match (it->ptid, ptid))
	    {
	      *prev_next_p = it->next;
	      it->next = NULL;
	      xfree (it);
	    }
	  else
	    {
	      prev_next_p = &it->next;
	    }

	  it = *prev_next_p;
	}
    }

  iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
}

static void
infrun_thread_thread_exit (struct thread_info *tp, int silent)
{
  if (ptid_equal (target_last_wait_ptid, tp->ptid))
    nullify_last_target_wait_ptid ();
}

/* Callback for iterate_over_threads.  */

static int
delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
{
  if (is_exited (info->ptid))
    return 0;

  delete_step_resume_breakpoint (info);
  delete_exception_resume_breakpoint (info);
  return 0;
}

/* In all-stop, delete the step resume breakpoint of any thread that
   had one.  In non-stop, delete the step resume breakpoint of the
   thread that just stopped.  */

static void
delete_step_thread_step_resume_breakpoint (void)
{
  if (!target_has_execution
      || ptid_equal (inferior_ptid, null_ptid))
    /* If the inferior has exited, we have already deleted the step
       resume breakpoints out of GDB's lists.  */
    return;

  if (non_stop)
    {
      /* If in non-stop mode, only delete the step-resume or
	 longjmp-resume breakpoint of the thread that just stopped
	 stepping.  */
      struct thread_info *tp = inferior_thread ();

      delete_step_resume_breakpoint (tp);
      delete_exception_resume_breakpoint (tp);
    }
  else
    /* In all-stop mode, delete all step-resume and longjmp-resume
       breakpoints of any thread that had them.  */
    iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
}

/* A cleanup wrapper.  */

static void
delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
{
  delete_step_thread_step_resume_breakpoint ();
}

/* Pretty print the results of target_wait, for debugging purposes.  */

static void
print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
			   const struct target_waitstatus *ws)
{
  char *status_string = target_waitstatus_to_string (ws);
  struct ui_file *tmp_stream = mem_fileopen ();
  char *text;

  /* The text is split over several lines because it was getting too long.
     Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
     output as a unit; we want only one timestamp printed if debug_timestamp
     is set.  */

  fprintf_unfiltered (tmp_stream,
		      "infrun: target_wait (%d", PIDGET (waiton_ptid));
  if (PIDGET (waiton_ptid) != -1)
    fprintf_unfiltered (tmp_stream,
			" [%s]", target_pid_to_str (waiton_ptid));
  fprintf_unfiltered (tmp_stream, ", status) =\n");
  fprintf_unfiltered (tmp_stream,
		      "infrun:   %d [%s],\n",
		      PIDGET (result_ptid), target_pid_to_str (result_ptid));
  fprintf_unfiltered (tmp_stream,
		      "infrun:   %s\n",
		      status_string);

  text = ui_file_xstrdup (tmp_stream, NULL);

  /* This uses %s in part to handle %'s in the text, but also to avoid
     a gcc error: the format attribute requires a string literal.  */
  fprintf_unfiltered (gdb_stdlog, "%s", text);

  xfree (status_string);
  xfree (text);
  ui_file_delete (tmp_stream);
}

/* Prepare and stabilize the inferior for detaching it.  E.g.,
   detaching while a thread is displaced stepping is a recipe for
   crashing it, as nothing would readjust the PC out of the scratch
   pad.  */

void
prepare_for_detach (void)
{
  struct inferior *inf = current_inferior ();
  ptid_t pid_ptid = pid_to_ptid (inf->pid);
  struct cleanup *old_chain_1;
  struct displaced_step_inferior_state *displaced;

  displaced = get_displaced_stepping_state (inf->pid);

  /* Is any thread of this process displaced stepping?  If not,
     there's nothing else to do.  */
  if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
    return;

  if (debug_infrun)
    fprintf_unfiltered (gdb_stdlog,
			"displaced-stepping in-process while detaching");

  old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
  inf->detaching = 1;

  while (!ptid_equal (displaced->step_ptid, null_ptid))
    {
      struct cleanup *old_chain_2;
      struct execution_control_state ecss;
      struct execution_control_state *ecs;

      ecs = &ecss;
      memset (ecs, 0, sizeof (*ecs));

      overlay_cache_invalid = 1;

      if (deprecated_target_wait_hook)
	ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
      else
	ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);

      if (debug_infrun)
	print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);

      /* If an error happens while handling the event, propagate GDB's
	 knowledge of the executing state to the frontend/user running
	 state.  */
      old_chain_2 = make_cleanup (finish_thread_state_cleanup,
				  &minus_one_ptid);

      /* Now figure out what to do with the result of the result.  */
      handle_inferior_event (ecs);

      /* No error, don't finish the state yet.  */
      discard_cleanups (old_chain_2);

      /* Breakpoints and watchpoints are not installed on the target
	 at this point, and signals are passed directly to the
	 inferior, so this must mean the process is gone.  */
      if (!ecs->wait_some_more)
	{
	  discard_cleanups (old_chain_1);
	  error (_("Program exited while detaching"));
	}
    }

  discard_cleanups (old_chain_1);
}

/* Wait for control to return from inferior to debugger.

   If inferior gets a signal, we may decide to start it up again
   instead of returning.  That is why there is a loop in this function.
   When this function actually returns it means the inferior
   should be left stopped and GDB should read more commands.  */

void
wait_for_inferior (void)
{
  struct cleanup *old_cleanups;

  if (debug_infrun)
    fprintf_unfiltered
      (gdb_stdlog, "infrun: wait_for_inferior ()\n");

  old_cleanups =
    make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);

  while (1)
    {
      struct execution_control_state ecss;
      struct execution_control_state *ecs = &ecss;
      struct cleanup *old_chain;

      memset (ecs, 0, sizeof (*ecs));

      overlay_cache_invalid = 1;

      if (deprecated_target_wait_hook)
	ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
      else
	ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);

      if (debug_infrun)
	print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);

      /* If an error happens while handling the event, propagate GDB's
	 knowledge of the executing state to the frontend/user running
	 state.  */
      old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);

      /* Now figure out what to do with the result of the result.  */
      handle_inferior_event (ecs);

      /* No error, don't finish the state yet.  */
      discard_cleanups (old_chain);

      if (!ecs->wait_some_more)
	break;
    }

  do_cleanups (old_cleanups);
}

/* Asynchronous version of wait_for_inferior.  It is called by the
   event loop whenever a change of state is detected on the file
   descriptor corresponding to the target.  It can be called more than
   once to complete a single execution command.  In such cases we need
   to keep the state in a global variable ECSS.  If it is the last time
   that this function is called for a single execution command, then
   report to the user that the inferior has stopped, and do the
   necessary cleanups.  */

void
fetch_inferior_event (void *client_data)
{
  struct execution_control_state ecss;
  struct execution_control_state *ecs = &ecss;
  struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
  struct cleanup *ts_old_chain;
  int was_sync = sync_execution;
  int cmd_done = 0;

  memset (ecs, 0, sizeof (*ecs));

  /* We're handling a live event, so make sure we're doing live
     debugging.  If we're looking at traceframes while the target is
     running, we're going to need to get back to that mode after
     handling the event.  */
  if (non_stop)
    {
      make_cleanup_restore_current_traceframe ();
      set_current_traceframe (-1);
    }

  if (non_stop)
    /* In non-stop mode, the user/frontend should not notice a thread
       switch due to internal events.  Make sure we reverse to the
       user selected thread and frame after handling the event and
       running any breakpoint commands.  */
    make_cleanup_restore_current_thread ();

  overlay_cache_invalid = 1;

  make_cleanup_restore_integer (&execution_direction);
  execution_direction = target_execution_direction ();

  if (deprecated_target_wait_hook)
    ecs->ptid =
      deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
  else
    ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);

  if (debug_infrun)
    print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);

  /* If an error happens while handling the event, propagate GDB's
     knowledge of the executing state to the frontend/user running
     state.  */
  if (!non_stop)
    ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
  else
    ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);

  /* Get executed before make_cleanup_restore_current_thread above to apply
     still for the thread which has thrown the exception.  */
  make_bpstat_clear_actions_cleanup ();

  /* Now figure out what to do with the result of the result.  */
  handle_inferior_event (ecs);

  if (!ecs->wait_some_more)
    {
      struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));

      delete_step_thread_step_resume_breakpoint ();

      /* We may not find an inferior if this was a process exit.  */
      if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
	normal_stop ();

      if (target_has_execution
	  && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
	  && ecs->ws.kind != TARGET_WAITKIND_EXITED
	  && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
	  && ecs->event_thread->step_multi
	  && ecs->event_thread->control.stop_step)
	inferior_event_handler (INF_EXEC_CONTINUE, NULL);
      else
	{
	  inferior_event_handler (INF_EXEC_COMPLETE, NULL);
	  cmd_done = 1;
	}
    }

  /* No error, don't finish the thread states yet.  */
  discard_cleanups (ts_old_chain);

  /* Revert thread and frame.  */
  do_cleanups (old_chain);

  /* If the inferior was in sync execution mode, and now isn't,
     restore the prompt (a synchronous execution command has finished,
     and we're ready for input).  */
  if (interpreter_async && was_sync && !sync_execution)
    display_gdb_prompt (0);

  if (cmd_done
      && !was_sync
      && exec_done_display_p
      && (ptid_equal (inferior_ptid, null_ptid)
	  || !is_running (inferior_ptid)))
    printf_unfiltered (_("completed.\n"));
}

/* Record the frame and location we're currently stepping through.  */
void
set_step_info (struct frame_info *frame, struct symtab_and_line sal)
{
  struct thread_info *tp = inferior_thread ();

  tp->control.step_frame_id = get_frame_id (frame);
  tp->control.step_stack_frame_id = get_stack_frame_id (frame);

  tp->current_symtab = sal.symtab;
  tp->current_line = sal.line;
}

/* Clear context switchable stepping state.  */

void
init_thread_stepping_state (struct thread_info *tss)
{
  tss->stepping_over_breakpoint = 0;
  tss->step_after_step_resume_breakpoint = 0;
}

/* Return the cached copy of the last pid/waitstatus returned by
   target_wait()/deprecated_target_wait_hook().  The data is actually
   cached by handle_inferior_event(), which gets called immediately
   after target_wait()/deprecated_target_wait_hook().  */

void
get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
{
  *ptidp = target_last_wait_ptid;
  *status = target_last_waitstatus;
}

void
nullify_last_target_wait_ptid (void)
{
  target_last_wait_ptid = minus_one_ptid;
}

/* Switch thread contexts.  */

static void
context_switch (ptid_t ptid)
{
  if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
    {
      fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
			  target_pid_to_str (inferior_ptid));
      fprintf_unfiltered (gdb_stdlog, "to %s\n",
			  target_pid_to_str (ptid));
    }

  switch_to_thread (ptid);
}

static void
adjust_pc_after_break (struct execution_control_state *ecs)
{
  struct regcache *regcache;
  struct gdbarch *gdbarch;
  struct address_space *aspace;
  CORE_ADDR breakpoint_pc;

  /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
     we aren't, just return.

     We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
     affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
     implemented by software breakpoints should be handled through the normal
     breakpoint layer.

     NOTE drow/2004-01-31: On some targets, breakpoints may generate
     different signals (SIGILL or SIGEMT for instance), but it is less
     clear where the PC is pointing afterwards.  It may not match
     gdbarch_decr_pc_after_break.  I don't know any specific target that
     generates these signals at breakpoints (the code has been in GDB since at
     least 1992) so I can not guess how to handle them here.

     In earlier versions of GDB, a target with 
     gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
     watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
     target with both of these set in GDB history, and it seems unlikely to be
     correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */

  if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
    return;

  if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
    return;

  /* In reverse execution, when a breakpoint is hit, the instruction
     under it has already been de-executed.  The reported PC always
     points at the breakpoint address, so adjusting it further would
     be wrong.  E.g., consider this case on a decr_pc_after_break == 1
     architecture:

       B1         0x08000000 :   INSN1
       B2         0x08000001 :   INSN2
		  0x08000002 :   INSN3
	    PC -> 0x08000003 :   INSN4

     Say you're stopped at 0x08000003 as above.  Reverse continuing
     from that point should hit B2 as below.  Reading the PC when the
     SIGTRAP is reported should read 0x08000001 and INSN2 should have
     been de-executed already.

       B1         0x08000000 :   INSN1
       B2   PC -> 0x08000001 :   INSN2
		  0x08000002 :   INSN3
		  0x08000003 :   INSN4

     We can't apply the same logic as for forward execution, because
     we would wrongly adjust the PC to 0x08000000, since there's a
     breakpoint at PC - 1.  We'd then report a hit on B1, although
     INSN1 hadn't been de-executed yet.  Doing nothing is the correct
     behaviour.  */
  if (execution_direction == EXEC_REVERSE)
    return;

  /* If this target does not decrement the PC after breakpoints, then
     we have nothing to do.  */
  regcache = get_thread_regcache (ecs->ptid);
  gdbarch = get_regcache_arch (regcache);
  if (gdbarch_decr_pc_after_break (gdbarch) == 0)
    return;

  aspace = get_regcache_aspace (regcache);

  /* Find the location where (if we've hit a breakpoint) the
     breakpoint would be.  */
  breakpoint_pc = regcache_read_pc (regcache)
		  - gdbarch_decr_pc_after_break (gdbarch);

  /* Check whether there actually is a software breakpoint inserted at
     that location.

     If in non-stop mode, a race condition is possible where we've
     removed a breakpoint, but stop events for that breakpoint were
     already queued and arrive later.  To suppress those spurious
     SIGTRAPs, we keep a list of such breakpoint locations for a bit,
     and retire them after a number of stop events are reported.  */
  if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
      || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
    {
      struct cleanup *old_cleanups = NULL;

      if (RECORD_IS_USED)
	old_cleanups = record_full_gdb_operation_disable_set ();

      /* When using hardware single-step, a SIGTRAP is reported for both
	 a completed single-step and a software breakpoint.  Need to
	 differentiate between the two, as the latter needs adjusting
	 but the former does not.

	 The SIGTRAP can be due to a completed hardware single-step only if 
	  - we didn't insert software single-step breakpoints
	  - the thread to be examined is still the current thread
	  - this thread is currently being stepped

	 If any of these events did not occur, we must have stopped due
	 to hitting a software breakpoint, and have to back up to the
	 breakpoint address.

	 As a special case, we could have hardware single-stepped a
	 software breakpoint.  In this case (prev_pc == breakpoint_pc),
	 we also need to back up to the breakpoint address.  */

      if (singlestep_breakpoints_inserted_p
	  || !ptid_equal (ecs->ptid, inferior_ptid)
	  || !currently_stepping (ecs->event_thread)
	  || ecs->event_thread->prev_pc == breakpoint_pc)
	regcache_write_pc (regcache, breakpoint_pc);

      if (RECORD_IS_USED)
	do_cleanups (old_cleanups);
    }
}

static void
init_infwait_state (void)
{
  waiton_ptid = pid_to_ptid (-1);
  infwait_state = infwait_normal_state;
}

static int
stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
{
  for (frame = get_prev_frame (frame);
       frame != NULL;
       frame = get_prev_frame (frame))
    {
      if (frame_id_eq (get_frame_id (frame), step_frame_id))
	return 1;
      if (get_frame_type (frame) != INLINE_FRAME)
	break;
    }

  return 0;
}

/* Auxiliary function that handles syscall entry/return events.
   It returns 1 if the inferior should keep going (and GDB
   should ignore the event), or 0 if the event deserves to be
   processed.  */

static int
handle_syscall_event (struct execution_control_state *ecs)
{
  struct regcache *regcache;
  int syscall_number;

  if (!ptid_equal (ecs->ptid, inferior_ptid))
    context_switch (ecs->ptid);

  regcache = get_thread_regcache (ecs->ptid);
  syscall_number = ecs->ws.value.syscall_number;
  stop_pc = regcache_read_pc (regcache);

  if (catch_syscall_enabled () > 0
      && catching_syscall_number (syscall_number) > 0)
    {
      enum bpstat_signal_value sval;

      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
                            syscall_number);

      ecs->event_thread->control.stop_bpstat
	= bpstat_stop_status (get_regcache_aspace (regcache),
			      stop_pc, ecs->ptid, &ecs->ws);

      sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
      ecs->random_signal = sval == BPSTAT_SIGNAL_NO;

      if (!ecs->random_signal)
	{
	  /* Catchpoint hit.  */
	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
	  return 0;
	}
    }

  /* If no catchpoint triggered for this, then keep going.  */
  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
  keep_going (ecs);
  return 1;
}

/* Clear the supplied execution_control_state's stop_func_* fields.  */

static void
clear_stop_func (struct execution_control_state *ecs)
{
  ecs->stop_func_filled_in = 0;
  ecs->stop_func_start = 0;
  ecs->stop_func_end = 0;
  ecs->stop_func_name = NULL;
}

/* Lazily fill in the execution_control_state's stop_func_* fields.  */

static void
fill_in_stop_func (struct gdbarch *gdbarch,
		   struct execution_control_state *ecs)
{
  if (!ecs->stop_func_filled_in)
    {
      /* Don't care about return value; stop_func_start and stop_func_name
	 will both be 0 if it doesn't work.  */
      find_pc_partial_function (stop_pc, &ecs->stop_func_name,
				&ecs->stop_func_start, &ecs->stop_func_end);
      ecs->stop_func_start
	+= gdbarch_deprecated_function_start_offset (gdbarch);

      ecs->stop_func_filled_in = 1;
    }
}

/* Given an execution control state that has been freshly filled in
   by an event from the inferior, figure out what it means and take
   appropriate action.  */

static void
handle_inferior_event (struct execution_control_state *ecs)
{
  struct frame_info *frame;
  struct gdbarch *gdbarch;
  int stopped_by_watchpoint;
  int stepped_after_stopped_by_watchpoint = 0;
  struct symtab_and_line stop_pc_sal;
  enum stop_kind stop_soon;

  if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
    {
      /* We had an event in the inferior, but we are not interested in
	 handling it at this level.  The lower layers have already
	 done what needs to be done, if anything.

	 One of the possible circumstances for this is when the
	 inferior produces output for the console.  The inferior has
	 not stopped, and we are ignoring the event.  Another possible
	 circumstance is any event which the lower level knows will be
	 reported multiple times without an intervening resume.  */
      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
      prepare_to_wait (ecs);
      return;
    }

  if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
      && target_can_async_p () && !sync_execution)
    {
      /* There were no unwaited-for children left in the target, but,
	 we're not synchronously waiting for events either.  Just
	 ignore.  Otherwise, if we were running a synchronous
	 execution command, we need to cancel it and give the user
	 back the terminal.  */
      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog,
			    "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
      prepare_to_wait (ecs);
      return;
    }

  if (ecs->ws.kind != TARGET_WAITKIND_EXITED
      && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
      && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
    {
      struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));

      gdb_assert (inf);
      stop_soon = inf->control.stop_soon;
    }
  else
    stop_soon = NO_STOP_QUIETLY;

  /* Cache the last pid/waitstatus.  */
  target_last_wait_ptid = ecs->ptid;
  target_last_waitstatus = ecs->ws;

  /* Always clear state belonging to the previous time we stopped.  */
  stop_stack_dummy = STOP_NONE;

  if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
    {
      /* No unwaited-for children left.  IOW, all resumed children
	 have exited.  */
      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");

      stop_print_frame = 0;
      stop_stepping (ecs);
      return;
    }

  if (ecs->ws.kind != TARGET_WAITKIND_EXITED
      && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
    {
      ecs->event_thread = find_thread_ptid (ecs->ptid);
      /* If it's a new thread, add it to the thread database.  */
      if (ecs->event_thread == NULL)
	ecs->event_thread = add_thread (ecs->ptid);
    }

  /* Dependent on valid ECS->EVENT_THREAD.  */
  adjust_pc_after_break (ecs);

  /* Dependent on the current PC value modified by adjust_pc_after_break.  */
  reinit_frame_cache ();

  breakpoint_retire_moribund ();

  /* First, distinguish signals caused by the debugger from signals
     that have to do with the program's own actions.  Note that
     breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
     on the operating system version.  Here we detect when a SIGILL or
     SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
     something similar for SIGSEGV, since a SIGSEGV will be generated
     when we're trying to execute a breakpoint instruction on a
     non-executable stack.  This happens for call dummy breakpoints
     for architectures like SPARC that place call dummies on the
     stack.  */
  if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
      && (ecs->ws.value.sig == GDB_SIGNAL_ILL
	  || ecs->ws.value.sig == GDB_SIGNAL_SEGV
	  || ecs->ws.value.sig == GDB_SIGNAL_EMT))
    {
      struct regcache *regcache = get_thread_regcache (ecs->ptid);

      if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
				      regcache_read_pc (regcache)))
	{
	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: Treating signal as SIGTRAP\n");
	  ecs->ws.value.sig = GDB_SIGNAL_TRAP;
	}
    }

  /* Mark the non-executing threads accordingly.  In all-stop, all
     threads of all processes are stopped when we get any event
     reported.  In non-stop mode, only the event thread stops.  If
     we're handling a process exit in non-stop mode, there's nothing
     to do, as threads of the dead process are gone, and threads of
     any other process were left running.  */
  if (!non_stop)
    set_executing (minus_one_ptid, 0);
  else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
	   && ecs->ws.kind != TARGET_WAITKIND_EXITED)
    set_executing (ecs->ptid, 0);

  switch (infwait_state)
    {
    case infwait_thread_hop_state:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
      break;

    case infwait_normal_state:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
      break;

    case infwait_step_watch_state:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog,
			    "infrun: infwait_step_watch_state\n");

      stepped_after_stopped_by_watchpoint = 1;
      break;

    case infwait_nonstep_watch_state:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog,
			    "infrun: infwait_nonstep_watch_state\n");
      insert_breakpoints ();

      /* FIXME-maybe: is this cleaner than setting a flag?  Does it
         handle things like signals arriving and other things happening
         in combination correctly?  */
      stepped_after_stopped_by_watchpoint = 1;
      break;

    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }

  infwait_state = infwait_normal_state;
  waiton_ptid = pid_to_ptid (-1);

  switch (ecs->ws.kind)
    {
    case TARGET_WAITKIND_LOADED:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
      /* Ignore gracefully during startup of the inferior, as it might
         be the shell which has just loaded some objects, otherwise
         add the symbols for the newly loaded objects.  Also ignore at
         the beginning of an attach or remote session; we will query
         the full list of libraries once the connection is
         established.  */
      if (stop_soon == NO_STOP_QUIETLY)
	{
	  struct regcache *regcache;
	  enum bpstat_signal_value sval;

	  if (!ptid_equal (ecs->ptid, inferior_ptid))
	    context_switch (ecs->ptid);
	  regcache = get_thread_regcache (ecs->ptid);

	  handle_solib_event ();

	  ecs->event_thread->control.stop_bpstat
	    = bpstat_stop_status (get_regcache_aspace (regcache),
				  stop_pc, ecs->ptid, &ecs->ws);

	  sval
	    = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
	  ecs->random_signal = sval == BPSTAT_SIGNAL_NO;

	  if (!ecs->random_signal)
	    {
	      /* A catchpoint triggered.  */
	      ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
	      goto process_event_stop_test;
	    }

	  /* If requested, stop when the dynamic linker notifies
	     gdb of events.  This allows the user to get control
	     and place breakpoints in initializer routines for
	     dynamically loaded objects (among other things).  */
	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
	  if (stop_on_solib_events)
	    {
	      /* Make sure we print "Stopped due to solib-event" in
		 normal_stop.  */
	      stop_print_frame = 1;

	      stop_stepping (ecs);
	      return;
	    }
	}

      /* If we are skipping through a shell, or through shared library
	 loading that we aren't interested in, resume the program.  If
	 we're running the program normally, also resume.  But stop if
	 we're attaching or setting up a remote connection.  */
      if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
	{
	  if (!ptid_equal (ecs->ptid, inferior_ptid))
	    context_switch (ecs->ptid);

	  /* Loading of shared libraries might have changed breakpoint
	     addresses.  Make sure new breakpoints are inserted.  */
	  if (stop_soon == NO_STOP_QUIETLY
	      && !breakpoints_always_inserted_mode ())
	    insert_breakpoints ();
	  resume (0, GDB_SIGNAL_0);
	  prepare_to_wait (ecs);
	  return;
	}

      break;

    case TARGET_WAITKIND_SPURIOUS:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
      if (!ptid_equal (ecs->ptid, inferior_ptid))
	context_switch (ecs->ptid);
      resume (0, GDB_SIGNAL_0);
      prepare_to_wait (ecs);
      return;

    case TARGET_WAITKIND_EXITED:
    case TARGET_WAITKIND_SIGNALLED:
      if (debug_infrun)
	{
	  if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: TARGET_WAITKIND_EXITED\n");
	  else
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: TARGET_WAITKIND_SIGNALLED\n");
	}

      inferior_ptid = ecs->ptid;
      set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
      set_current_program_space (current_inferior ()->pspace);
      handle_vfork_child_exec_or_exit (0);
      target_terminal_ours ();	/* Must do this before mourn anyway.  */

      if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
	{
	  /* Record the exit code in the convenience variable $_exitcode, so
	     that the user can inspect this again later.  */
	  set_internalvar_integer (lookup_internalvar ("_exitcode"),
				   (LONGEST) ecs->ws.value.integer);

	  /* Also record this in the inferior itself.  */
	  current_inferior ()->has_exit_code = 1;
	  current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;

	  print_exited_reason (ecs->ws.value.integer);
	}
      else
	print_signal_exited_reason (ecs->ws.value.sig);

      gdb_flush (gdb_stdout);
      target_mourn_inferior ();
      singlestep_breakpoints_inserted_p = 0;
      cancel_single_step_breakpoints ();
      stop_print_frame = 0;
      stop_stepping (ecs);
      return;

      /* The following are the only cases in which we keep going;
         the above cases end in a continue or goto.  */
    case TARGET_WAITKIND_FORKED:
    case TARGET_WAITKIND_VFORKED:
      if (debug_infrun)
	{
	  if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
	  else
	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
	}

      /* Check whether the inferior is displaced stepping.  */
      {
	struct regcache *regcache = get_thread_regcache (ecs->ptid);
	struct gdbarch *gdbarch = get_regcache_arch (regcache);
	struct displaced_step_inferior_state *displaced
	  = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));

	/* If checking displaced stepping is supported, and thread
	   ecs->ptid is displaced stepping.  */
	if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
	  {
	    struct inferior *parent_inf
	      = find_inferior_pid (ptid_get_pid (ecs->ptid));
	    struct regcache *child_regcache;
	    CORE_ADDR parent_pc;

	    /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
	       indicating that the displaced stepping of syscall instruction
	       has been done.  Perform cleanup for parent process here.  Note
	       that this operation also cleans up the child process for vfork,
	       because their pages are shared.  */
	    displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);

	    if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
	      {
		/* Restore scratch pad for child process.  */
		displaced_step_restore (displaced, ecs->ws.value.related_pid);
	      }

	    /* Since the vfork/fork syscall instruction was executed in the scratchpad,
	       the child's PC is also within the scratchpad.  Set the child's PC
	       to the parent's PC value, which has already been fixed up.
	       FIXME: we use the parent's aspace here, although we're touching
	       the child, because the child hasn't been added to the inferior
	       list yet at this point.  */

	    child_regcache
	      = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
						 gdbarch,
						 parent_inf->aspace);
	    /* Read PC value of parent process.  */
	    parent_pc = regcache_read_pc (regcache);

	    if (debug_displaced)
	      fprintf_unfiltered (gdb_stdlog,
				  "displaced: write child pc from %s to %s\n",
				  paddress (gdbarch,
					    regcache_read_pc (child_regcache)),
				  paddress (gdbarch, parent_pc));

	    regcache_write_pc (child_regcache, parent_pc);
	  }
      }

      if (!ptid_equal (ecs->ptid, inferior_ptid))
	context_switch (ecs->ptid);

      /* Immediately detach breakpoints from the child before there's
	 any chance of letting the user delete breakpoints from the
	 breakpoint lists.  If we don't do this early, it's easy to
	 leave left over traps in the child, vis: "break foo; catch
	 fork; c; <fork>; del; c; <child calls foo>".  We only follow
	 the fork on the last `continue', and by that time the
	 breakpoint at "foo" is long gone from the breakpoint table.
	 If we vforked, then we don't need to unpatch here, since both
	 parent and child are sharing the same memory pages; we'll
	 need to unpatch at follow/detach time instead to be certain
	 that new breakpoints added between catchpoint hit time and
	 vfork follow are detached.  */
      if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
	{
	  /* This won't actually modify the breakpoint list, but will
	     physically remove the breakpoints from the child.  */
	  detach_breakpoints (ecs->ws.value.related_pid);
	}

      if (singlestep_breakpoints_inserted_p)
	{
	  /* Pull the single step breakpoints out of the target.  */
	  remove_single_step_breakpoints ();
	  singlestep_breakpoints_inserted_p = 0;
	}

      /* In case the event is caught by a catchpoint, remember that
	 the event is to be followed at the next resume of the thread,
	 and not immediately.  */
      ecs->event_thread->pending_follow = ecs->ws;

      stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));

      ecs->event_thread->control.stop_bpstat
	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
			      stop_pc, ecs->ptid, &ecs->ws);

      /* Note that we're interested in knowing the bpstat actually
	 causes a stop, not just if it may explain the signal.
	 Software watchpoints, for example, always appear in the
	 bpstat.  */
      ecs->random_signal
	= !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);

      /* If no catchpoint triggered for this, then keep going.  */
      if (ecs->random_signal)
	{
	  ptid_t parent;
	  ptid_t child;
	  int should_resume;
	  int follow_child
	    = (follow_fork_mode_string == follow_fork_mode_child);

	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;

	  should_resume = follow_fork ();

	  parent = ecs->ptid;
	  child = ecs->ws.value.related_pid;

	  /* In non-stop mode, also resume the other branch.  */
	  if (non_stop && !detach_fork)
	    {
	      if (follow_child)
		switch_to_thread (parent);
	      else
		switch_to_thread (child);

	      ecs->event_thread = inferior_thread ();
	      ecs->ptid = inferior_ptid;
	      keep_going (ecs);
	    }

	  if (follow_child)
	    switch_to_thread (child);
	  else
	    switch_to_thread (parent);

	  ecs->event_thread = inferior_thread ();
	  ecs->ptid = inferior_ptid;

	  if (should_resume)
	    keep_going (ecs);
	  else
	    stop_stepping (ecs);
	  return;
	}
      ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
      goto process_event_stop_test;

    case TARGET_WAITKIND_VFORK_DONE:
      /* Done with the shared memory region.  Re-insert breakpoints in
	 the parent, and keep going.  */

      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog,
			    "infrun: TARGET_WAITKIND_VFORK_DONE\n");

      if (!ptid_equal (ecs->ptid, inferior_ptid))
	context_switch (ecs->ptid);

      current_inferior ()->waiting_for_vfork_done = 0;
      current_inferior ()->pspace->breakpoints_not_allowed = 0;
      /* This also takes care of reinserting breakpoints in the
	 previously locked inferior.  */
      keep_going (ecs);
      return;

    case TARGET_WAITKIND_EXECD:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");

      if (!ptid_equal (ecs->ptid, inferior_ptid))
	context_switch (ecs->ptid);

      singlestep_breakpoints_inserted_p = 0;
      cancel_single_step_breakpoints ();

      stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));

      /* Do whatever is necessary to the parent branch of the vfork.  */
      handle_vfork_child_exec_or_exit (1);

      /* This causes the eventpoints and symbol table to be reset.
         Must do this now, before trying to determine whether to
         stop.  */
      follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);

      ecs->event_thread->control.stop_bpstat
	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
			      stop_pc, ecs->ptid, &ecs->ws);
      ecs->random_signal
	= (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
	   == BPSTAT_SIGNAL_NO);

      /* Note that this may be referenced from inside
	 bpstat_stop_status above, through inferior_has_execd.  */
      xfree (ecs->ws.value.execd_pathname);
      ecs->ws.value.execd_pathname = NULL;

      /* If no catchpoint triggered for this, then keep going.  */
      if (ecs->random_signal)
	{
	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
	  keep_going (ecs);
	  return;
	}
      ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
      goto process_event_stop_test;

      /* Be careful not to try to gather much state about a thread
         that's in a syscall.  It's frequently a losing proposition.  */
    case TARGET_WAITKIND_SYSCALL_ENTRY:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog,
			    "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
      /* Getting the current syscall number.  */
      if (handle_syscall_event (ecs) != 0)
        return;
      goto process_event_stop_test;

      /* Before examining the threads further, step this thread to
         get it entirely out of the syscall.  (We get notice of the
         event when the thread is just on the verge of exiting a
         syscall.  Stepping one instruction seems to get it back
         into user code.)  */
    case TARGET_WAITKIND_SYSCALL_RETURN:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog,
			    "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
      if (handle_syscall_event (ecs) != 0)
        return;
      goto process_event_stop_test;

    case TARGET_WAITKIND_STOPPED:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
      ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
      break;

    case TARGET_WAITKIND_NO_HISTORY:
      if (debug_infrun)
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
      /* Reverse execution: target ran out of history info.  */

      /* Pull the single step breakpoints out of the target.  */
      if (singlestep_breakpoints_inserted_p)
	{
	  if (!ptid_equal (ecs->ptid, inferior_ptid))
	    context_switch (ecs->ptid);
	  remove_single_step_breakpoints ();
	  singlestep_breakpoints_inserted_p = 0;
	}
      stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
      print_no_history_reason ();
      stop_stepping (ecs);
      return;
    }

  if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
    {
      /* Do we need to clean up the state of a thread that has
	 completed a displaced single-step?  (Doing so usually affects
	 the PC, so do it here, before we set stop_pc.)  */
      displaced_step_fixup (ecs->ptid,
			    ecs->event_thread->suspend.stop_signal);

      /* If we either finished a single-step or hit a breakpoint, but
	 the user wanted this thread to be stopped, pretend we got a
	 SIG0 (generic unsignaled stop).  */

      if (ecs->event_thread->stop_requested
	  && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
    }

  stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));

  if (debug_infrun)
    {
      struct regcache *regcache = get_thread_regcache (ecs->ptid);
      struct gdbarch *gdbarch = get_regcache_arch (regcache);
      struct cleanup *old_chain = save_inferior_ptid ();

      inferior_ptid = ecs->ptid;

      fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
                          paddress (gdbarch, stop_pc));
      if (target_stopped_by_watchpoint ())
	{
          CORE_ADDR addr;

	  fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");

          if (target_stopped_data_address (&current_target, &addr))
            fprintf_unfiltered (gdb_stdlog,
                                "infrun: stopped data address = %s\n",
                                paddress (gdbarch, addr));
          else
            fprintf_unfiltered (gdb_stdlog,
                                "infrun: (no data address available)\n");
	}

      do_cleanups (old_chain);
    }

  if (stepping_past_singlestep_breakpoint)
    {
      gdb_assert (singlestep_breakpoints_inserted_p);
      gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
      gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));

      stepping_past_singlestep_breakpoint = 0;

      /* We've either finished single-stepping past the single-step
         breakpoint, or stopped for some other reason.  It would be nice if
         we could tell, but we can't reliably.  */
      if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
	{
	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: stepping_past_"
				"singlestep_breakpoint\n");
	  /* Pull the single step breakpoints out of the target.  */
	  if (!ptid_equal (ecs->ptid, inferior_ptid))
	    context_switch (ecs->ptid);
	  remove_single_step_breakpoints ();
	  singlestep_breakpoints_inserted_p = 0;

	  ecs->random_signal = 0;
	  ecs->event_thread->control.trap_expected = 0;

	  context_switch (saved_singlestep_ptid);
	  if (deprecated_context_hook)
	    deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));

	  resume (1, GDB_SIGNAL_0);
	  prepare_to_wait (ecs);
	  return;
	}
    }

  if (!ptid_equal (deferred_step_ptid, null_ptid))
    {
      /* In non-stop mode, there's never a deferred_step_ptid set.  */
      gdb_assert (!non_stop);

      /* If we stopped for some other reason than single-stepping, ignore
	 the fact that we were supposed to switch back.  */
      if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
	{
	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: handling deferred step\n");

	  /* Pull the single step breakpoints out of the target.  */
	  if (singlestep_breakpoints_inserted_p)
	    {
	      if (!ptid_equal (ecs->ptid, inferior_ptid))
		context_switch (ecs->ptid);
	      remove_single_step_breakpoints ();
	      singlestep_breakpoints_inserted_p = 0;
	    }

	  ecs->event_thread->control.trap_expected = 0;

	  context_switch (deferred_step_ptid);
	  deferred_step_ptid = null_ptid;
	  /* Suppress spurious "Switching to ..." message.  */
	  previous_inferior_ptid = inferior_ptid;

	  resume (1, GDB_SIGNAL_0);
	  prepare_to_wait (ecs);
	  return;
	}

      deferred_step_ptid = null_ptid;
    }

  /* See if a thread hit a thread-specific breakpoint that was meant for
     another thread.  If so, then step that thread past the breakpoint,
     and continue it.  */

  if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
    {
      int thread_hop_needed = 0;
      struct address_space *aspace = 
	get_regcache_aspace (get_thread_regcache (ecs->ptid));

      /* Check if a regular breakpoint has been hit before checking
         for a potential single step breakpoint.  Otherwise, GDB will
         not see this breakpoint hit when stepping onto breakpoints.  */
      if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
	{
	  ecs->random_signal = 0;
	  if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
	    thread_hop_needed = 1;
	}
      else if (singlestep_breakpoints_inserted_p)
	{
	  /* We have not context switched yet, so this should be true
	     no matter which thread hit the singlestep breakpoint.  */
	  gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
				"trap for %s\n",
				target_pid_to_str (ecs->ptid));

	  ecs->random_signal = 0;
	  /* The call to in_thread_list is necessary because PTIDs sometimes
	     change when we go from single-threaded to multi-threaded.  If
	     the singlestep_ptid is still in the list, assume that it is
	     really different from ecs->ptid.  */
	  if (!ptid_equal (singlestep_ptid, ecs->ptid)
	      && in_thread_list (singlestep_ptid))
	    {
	      /* If the PC of the thread we were trying to single-step
		 has changed, discard this event (which we were going
		 to ignore anyway), and pretend we saw that thread
		 trap.  This prevents us continuously moving the
		 single-step breakpoint forward, one instruction at a
		 time.  If the PC has changed, then the thread we were
		 trying to single-step has trapped or been signalled,
		 but the event has not been reported to GDB yet.

		 There might be some cases where this loses signal
		 information, if a signal has arrived at exactly the
		 same time that the PC changed, but this is the best
		 we can do with the information available.  Perhaps we
		 should arrange to report all events for all threads
		 when they stop, or to re-poll the remote looking for
		 this particular thread (i.e. temporarily enable
		 schedlock).  */

	     CORE_ADDR new_singlestep_pc
	       = regcache_read_pc (get_thread_regcache (singlestep_ptid));

	     if (new_singlestep_pc != singlestep_pc)
	       {
		 enum gdb_signal stop_signal;

		 if (debug_infrun)
		   fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
				       " but expected thread advanced also\n");

		 /* The current context still belongs to
		    singlestep_ptid.  Don't swap here, since that's
		    the context we want to use.  Just fudge our
		    state and continue.  */
                 stop_signal = ecs->event_thread->suspend.stop_signal;
                 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
                 ecs->ptid = singlestep_ptid;
                 ecs->event_thread = find_thread_ptid (ecs->ptid);
                 ecs->event_thread->suspend.stop_signal = stop_signal;
                 stop_pc = new_singlestep_pc;
               }
             else
	       {
		 if (debug_infrun)
		   fprintf_unfiltered (gdb_stdlog,
				       "infrun: unexpected thread\n");

		 thread_hop_needed = 1;
		 stepping_past_singlestep_breakpoint = 1;
		 saved_singlestep_ptid = singlestep_ptid;
	       }
	    }
	}

      if (thread_hop_needed)
	{
	  struct regcache *thread_regcache;
	  int remove_status = 0;

	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");

	  /* Switch context before touching inferior memory, the
	     previous thread may have exited.  */
	  if (!ptid_equal (inferior_ptid, ecs->ptid))
	    context_switch (ecs->ptid);

	  /* Saw a breakpoint, but it was hit by the wrong thread.
	     Just continue.  */

	  if (singlestep_breakpoints_inserted_p)
	    {
	      /* Pull the single step breakpoints out of the target.  */
	      remove_single_step_breakpoints ();
	      singlestep_breakpoints_inserted_p = 0;
	    }

	  /* If the arch can displace step, don't remove the
	     breakpoints.  */
	  thread_regcache = get_thread_regcache (ecs->ptid);
	  if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
	    remove_status = remove_breakpoints ();

	  /* Did we fail to remove breakpoints?  If so, try
	     to set the PC past the bp.  (There's at least
	     one situation in which we can fail to remove
	     the bp's: On HP-UX's that use ttrace, we can't
	     change the address space of a vforking child
	     process until the child exits (well, okay, not
	     then either :-) or execs.  */
	  if (remove_status != 0)
	    error (_("Cannot step over breakpoint hit in wrong thread"));
	  else
	    {			/* Single step */
	      if (!non_stop)
		{
		  /* Only need to require the next event from this
		     thread in all-stop mode.  */
		  waiton_ptid = ecs->ptid;
		  infwait_state = infwait_thread_hop_state;
		}

	      ecs->event_thread->stepping_over_breakpoint = 1;
	      keep_going (ecs);
	      return;
	    }
	}
      else if (singlestep_breakpoints_inserted_p)
	{
	  ecs->random_signal = 0;
	}
    }
  else
    ecs->random_signal = 1;

  /* See if something interesting happened to the non-current thread.  If
     so, then switch to that thread.  */
  if (!ptid_equal (ecs->ptid, inferior_ptid))
    {
      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");

      context_switch (ecs->ptid);

      if (deprecated_context_hook)
	deprecated_context_hook (pid_to_thread_id (ecs->ptid));
    }

  /* At this point, get hold of the now-current thread's frame.  */
  frame = get_current_frame ();
  gdbarch = get_frame_arch (frame);

  if (singlestep_breakpoints_inserted_p)
    {
      /* Pull the single step breakpoints out of the target.  */
      remove_single_step_breakpoints ();
      singlestep_breakpoints_inserted_p = 0;
    }

  if (stepped_after_stopped_by_watchpoint)
    stopped_by_watchpoint = 0;
  else
    stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);

  /* If necessary, step over this watchpoint.  We'll be back to display
     it in a moment.  */
  if (stopped_by_watchpoint
      && (target_have_steppable_watchpoint
	  || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
    {
      /* At this point, we are stopped at an instruction which has
         attempted to write to a piece of memory under control of
         a watchpoint.  The instruction hasn't actually executed
         yet.  If we were to evaluate the watchpoint expression
         now, we would get the old value, and therefore no change
         would seem to have occurred.

         In order to make watchpoints work `right', we really need
         to complete the memory write, and then evaluate the
         watchpoint expression.  We do this by single-stepping the
	 target.

	 It may not be necessary to disable the watchpoint to stop over
	 it.  For example, the PA can (with some kernel cooperation)
	 single step over a watchpoint without disabling the watchpoint.

	 It is far more common to need to disable a watchpoint to step
	 the inferior over it.  If we have non-steppable watchpoints,
	 we must disable the current watchpoint; it's simplest to
	 disable all watchpoints and breakpoints.  */
      int hw_step = 1;

      if (!target_have_steppable_watchpoint)
	{
	  remove_breakpoints ();
	  /* See comment in resume why we need to stop bypassing signals
	     while breakpoints have been removed.  */
	  target_pass_signals (0, NULL);
	}
	/* Single step */
      hw_step = maybe_software_singlestep (gdbarch, stop_pc);
      target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
      waiton_ptid = ecs->ptid;
      if (target_have_steppable_watchpoint)
	infwait_state = infwait_step_watch_state;
      else
	infwait_state = infwait_nonstep_watch_state;
      prepare_to_wait (ecs);
      return;
    }

  clear_stop_func (ecs);
  ecs->event_thread->stepping_over_breakpoint = 0;
  bpstat_clear (&ecs->event_thread->control.stop_bpstat);
  ecs->event_thread->control.stop_step = 0;
  stop_print_frame = 1;
  ecs->random_signal = 0;
  stopped_by_random_signal = 0;

  /* Hide inlined functions starting here, unless we just performed stepi or
     nexti.  After stepi and nexti, always show the innermost frame (not any
     inline function call sites).  */
  if (ecs->event_thread->control.step_range_end != 1)
    {
      struct address_space *aspace = 
	get_regcache_aspace (get_thread_regcache (ecs->ptid));

      /* skip_inline_frames is expensive, so we avoid it if we can
	 determine that the address is one where functions cannot have
	 been inlined.  This improves performance with inferiors that
	 load a lot of shared libraries, because the solib event
	 breakpoint is defined as the address of a function (i.e. not
	 inline).  Note that we have to check the previous PC as well
	 as the current one to catch cases when we have just
	 single-stepped off a breakpoint prior to reinstating it.
	 Note that we're assuming that the code we single-step to is
	 not inline, but that's not definitive: there's nothing
	 preventing the event breakpoint function from containing
	 inlined code, and the single-step ending up there.  If the
	 user had set a breakpoint on that inlined code, the missing
	 skip_inline_frames call would break things.  Fortunately
	 that's an extremely unlikely scenario.  */
      if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
	  && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
	       && ecs->event_thread->control.trap_expected
	       && pc_at_non_inline_function (aspace,
					     ecs->event_thread->prev_pc,
					     &ecs->ws)))
	{
	  skip_inline_frames (ecs->ptid);

	  /* Re-fetch current thread's frame in case that invalidated
	     the frame cache.  */
	  frame = get_current_frame ();
	  gdbarch = get_frame_arch (frame);
	}
    }

  if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
      && ecs->event_thread->control.trap_expected
      && gdbarch_single_step_through_delay_p (gdbarch)
      && currently_stepping (ecs->event_thread))
    {
      /* We're trying to step off a breakpoint.  Turns out that we're
	 also on an instruction that needs to be stepped multiple
	 times before it's been fully executing.  E.g., architectures
	 with a delay slot.  It needs to be stepped twice, once for
	 the instruction and once for the delay slot.  */
      int step_through_delay
	= gdbarch_single_step_through_delay (gdbarch, frame);

      if (debug_infrun && step_through_delay)
	fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
      if (ecs->event_thread->control.step_range_end == 0
	  && step_through_delay)
	{
	  /* The user issued a continue when stopped at a breakpoint.
	     Set up for another trap and get out of here.  */
         ecs->event_thread->stepping_over_breakpoint = 1;
         keep_going (ecs);
         return;
	}
      else if (step_through_delay)
	{
	  /* The user issued a step when stopped at a breakpoint.
	     Maybe we should stop, maybe we should not - the delay
	     slot *might* correspond to a line of source.  In any
	     case, don't decide that here, just set 
	     ecs->stepping_over_breakpoint, making sure we 
	     single-step again before breakpoints are re-inserted.  */
	  ecs->event_thread->stepping_over_breakpoint = 1;
	}
    }

  /* Look at the cause of the stop, and decide what to do.
     The alternatives are:
     1) stop_stepping and return; to really stop and return to the debugger,
     2) keep_going and return to start up again
     (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
     3) set ecs->random_signal to 1, and the decision between 1 and 2
     will be made according to the signal handling tables.  */

  if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
      && stop_after_trap)
    {
      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
      stop_print_frame = 0;
      stop_stepping (ecs);
      return;
    }

  /* This is originated from start_remote(), start_inferior() and
     shared libraries hook functions.  */
  if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
    {
      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
      stop_stepping (ecs);
      return;
    }

  /* This originates from attach_command().  We need to overwrite
     the stop_signal here, because some kernels don't ignore a
     SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
     See more comments in inferior.h.  On the other hand, if we
     get a non-SIGSTOP, report it to the user - assume the backend
     will handle the SIGSTOP if it should show up later.

     Also consider that the attach is complete when we see a
     SIGTRAP.  Some systems (e.g. Windows), and stubs supporting
     target extended-remote report it instead of a SIGSTOP
     (e.g. gdbserver).  We already rely on SIGTRAP being our
     signal, so this is no exception.

     Also consider that the attach is complete when we see a
     GDB_SIGNAL_0.  In non-stop mode, GDB will explicitly tell
     the target to stop all threads of the inferior, in case the
     low level attach operation doesn't stop them implicitly.  If
     they weren't stopped implicitly, then the stub will report a
     GDB_SIGNAL_0, meaning: stopped for no particular reason
     other than GDB's request.  */
  if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
      && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
    {
      stop_stepping (ecs);
      ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
      return;
    }

  /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
     handles this event.  */
  ecs->event_thread->control.stop_bpstat
    = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
			  stop_pc, ecs->ptid, &ecs->ws);

  /* Following in case break condition called a
     function.  */
  stop_print_frame = 1;

  /* This is where we handle "moribund" watchpoints.  Unlike
     software breakpoints traps, hardware watchpoint traps are
     always distinguishable from random traps.  If no high-level
     watchpoint is associated with the reported stop data address
     anymore, then the bpstat does not explain the signal ---
     simply make sure to ignore it if `stopped_by_watchpoint' is
     set.  */

  if (debug_infrun
      && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
      && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
	  == BPSTAT_SIGNAL_NO)
      && stopped_by_watchpoint)
    fprintf_unfiltered (gdb_stdlog,
			"infrun: no user watchpoint explains "
			"watchpoint SIGTRAP, ignoring\n");

  /* NOTE: cagney/2003-03-29: These two checks for a random signal
     at one stage in the past included checks for an inferior
     function call's call dummy's return breakpoint.  The original
     comment, that went with the test, read:

     ``End of a stack dummy.  Some systems (e.g. Sony news) give
     another signal besides SIGTRAP, so check here as well as
     above.''

     If someone ever tries to get call dummys on a
     non-executable stack to work (where the target would stop
     with something like a SIGSEGV), then those tests might need
     to be re-instated.  Given, however, that the tests were only
     enabled when momentary breakpoints were not being used, I
     suspect that it won't be the case.

     NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
     be necessary for call dummies on a non-executable stack on
     SPARC.  */

  if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
    ecs->random_signal
      = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
	   != BPSTAT_SIGNAL_NO)
	  || stopped_by_watchpoint
	  || ecs->event_thread->control.trap_expected
	  || (ecs->event_thread->control.step_range_end
	      && (ecs->event_thread->control.step_resume_breakpoint
		  == NULL)));
  else
    {
      enum bpstat_signal_value sval;

      sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
      ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);

      if (sval == BPSTAT_SIGNAL_HIDE)
	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
    }

process_event_stop_test:

  /* Re-fetch current thread's frame in case we did a
     "goto process_event_stop_test" above.  */
  frame = get_current_frame ();
  gdbarch = get_frame_arch (frame);

  /* For the program's own signals, act according to
     the signal handling tables.  */

  if (ecs->random_signal)
    {
      /* Signal not for debugging purposes.  */
      int printed = 0;
      struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));

      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
			     ecs->event_thread->suspend.stop_signal);

      stopped_by_random_signal = 1;

      if (signal_print[ecs->event_thread->suspend.stop_signal])
	{
	  printed = 1;
	  target_terminal_ours_for_output ();
	  print_signal_received_reason
				     (ecs->event_thread->suspend.stop_signal);
	}
      /* Always stop on signals if we're either just gaining control
	 of the program, or the user explicitly requested this thread
	 to remain stopped.  */
      if (stop_soon != NO_STOP_QUIETLY
	  || ecs->event_thread->stop_requested
	  || (!inf->detaching
	      && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
	{
	  stop_stepping (ecs);
	  return;
	}
      /* If not going to stop, give terminal back
         if we took it away.  */
      else if (printed)
	target_terminal_inferior ();

      /* Clear the signal if it should not be passed.  */
      if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;

      if (ecs->event_thread->prev_pc == stop_pc
	  && ecs->event_thread->control.trap_expected
	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
	{
	  /* We were just starting a new sequence, attempting to
	     single-step off of a breakpoint and expecting a SIGTRAP.
	     Instead this signal arrives.  This signal will take us out
	     of the stepping range so GDB needs to remember to, when
	     the signal handler returns, resume stepping off that
	     breakpoint.  */
	  /* To simplify things, "continue" is forced to use the same
	     code paths as single-step - set a breakpoint at the
	     signal return address and then, once hit, step off that
	     breakpoint.  */
          if (debug_infrun)
            fprintf_unfiltered (gdb_stdlog,
                                "infrun: signal arrived while stepping over "
                                "breakpoint\n");

	  insert_hp_step_resume_breakpoint_at_frame (frame);
	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
	  ecs->event_thread->control.trap_expected = 0;
	  keep_going (ecs);
	  return;
	}

      if (ecs->event_thread->control.step_range_end != 0
	  && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
	  && (ecs->event_thread->control.step_range_start <= stop_pc
	      && stop_pc < ecs->event_thread->control.step_range_end)
	  && frame_id_eq (get_stack_frame_id (frame),
			  ecs->event_thread->control.step_stack_frame_id)
	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
	{
	  /* The inferior is about to take a signal that will take it
	     out of the single step range.  Set a breakpoint at the
	     current PC (which is presumably where the signal handler
	     will eventually return) and then allow the inferior to
	     run free.

	     Note that this is only needed for a signal delivered
	     while in the single-step range.  Nested signals aren't a
	     problem as they eventually all return.  */
          if (debug_infrun)
            fprintf_unfiltered (gdb_stdlog,
                                "infrun: signal may take us out of "
                                "single-step range\n");

	  insert_hp_step_resume_breakpoint_at_frame (frame);
	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
	  ecs->event_thread->control.trap_expected = 0;
	  keep_going (ecs);
	  return;
	}

      /* Note: step_resume_breakpoint may be non-NULL.  This occures
	 when either there's a nested signal, or when there's a
	 pending signal enabled just as the signal handler returns
	 (leaving the inferior at the step-resume-breakpoint without
	 actually executing it).  Either way continue until the
	 breakpoint is really hit.  */
    }
  else
    {
      /* Handle cases caused by hitting a breakpoint.  */

      CORE_ADDR jmp_buf_pc;
      struct bpstat_what what;

      what = bpstat_what (ecs->event_thread->control.stop_bpstat);

      if (what.call_dummy)
	{
	  stop_stack_dummy = what.call_dummy;
	}

      /* If we hit an internal event that triggers symbol changes, the
	 current frame will be invalidated within bpstat_what (e.g.,
	 if we hit an internal solib event).  Re-fetch it.  */
      frame = get_current_frame ();
      gdbarch = get_frame_arch (frame);

      switch (what.main_action)
	{
	case BPSTAT_WHAT_SET_LONGJMP_RESUME:
	  /* If we hit the breakpoint at longjmp while stepping, we
	     install a momentary breakpoint at the target of the
	     jmp_buf.  */

	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");

	  ecs->event_thread->stepping_over_breakpoint = 1;

	  if (what.is_longjmp)
	    {
	      struct value *arg_value;

	      /* If we set the longjmp breakpoint via a SystemTap
		 probe, then use it to extract the arguments.  The
		 destination PC is the third argument to the
		 probe.  */
	      arg_value = probe_safe_evaluate_at_pc (frame, 2);
	      if (arg_value)
		jmp_buf_pc = value_as_address (arg_value);
	      else if (!gdbarch_get_longjmp_target_p (gdbarch)
		       || !gdbarch_get_longjmp_target (gdbarch,
						       frame, &jmp_buf_pc))
		{
		  if (debug_infrun)
		    fprintf_unfiltered (gdb_stdlog,
					"infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
					"(!gdbarch_get_longjmp_target)\n");
		  keep_going (ecs);
		  return;
		}

	      /* Insert a breakpoint at resume address.  */
	      insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
	    }
	  else
	    check_exception_resume (ecs, frame);
	  keep_going (ecs);
	  return;

	case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
	  {
	    struct frame_info *init_frame;

	    /* There are several cases to consider.

	       1. The initiating frame no longer exists.  In this case
	       we must stop, because the exception or longjmp has gone
	       too far.

	       2. The initiating frame exists, and is the same as the
	       current frame.  We stop, because the exception or
	       longjmp has been caught.

	       3. The initiating frame exists and is different from
	       the current frame.  This means the exception or longjmp
	       has been caught beneath the initiating frame, so keep
	       going.

	       4. longjmp breakpoint has been placed just to protect
	       against stale dummy frames and user is not interested
	       in stopping around longjmps.  */

	    if (debug_infrun)
	      fprintf_unfiltered (gdb_stdlog,
				  "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");

	    gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
			!= NULL);
	    delete_exception_resume_breakpoint (ecs->event_thread);

	    if (what.is_longjmp)
	      {
		check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);

		if (!frame_id_p (ecs->event_thread->initiating_frame))
		  {
		    /* Case 4.  */
		    keep_going (ecs);
		    return;
		  }
	      }

	    init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);

	    if (init_frame)
	      {
		struct frame_id current_id
		  = get_frame_id (get_current_frame ());
		if (frame_id_eq (current_id,
				 ecs->event_thread->initiating_frame))
		  {
		    /* Case 2.  Fall through.  */
		  }
		else
		  {
		    /* Case 3.  */
		    keep_going (ecs);
		    return;
		  }
	      }

	    /* For Cases 1 and 2, remove the step-resume breakpoint,
	       if it exists.  */
	    delete_step_resume_breakpoint (ecs->event_thread);

	    ecs->event_thread->control.stop_step = 1;
	    print_end_stepping_range_reason ();
	    stop_stepping (ecs);
	  }
	  return;

	case BPSTAT_WHAT_SINGLE:
	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
	  ecs->event_thread->stepping_over_breakpoint = 1;
	  /* Still need to check other stuff, at least the case where
	     we are stepping and step out of the right range.  */
	  break;

	case BPSTAT_WHAT_STEP_RESUME:
	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");

	  delete_step_resume_breakpoint (ecs->event_thread);
	  if (ecs->event_thread->control.proceed_to_finish
	      && execution_direction == EXEC_REVERSE)
	    {
	      struct thread_info *tp = ecs->event_thread;

	      /* We are finishing a function in reverse, and just hit
		 the step-resume breakpoint at the start address of
		 the function, and we're almost there -- just need to
		 back up by one more single-step, which should take us
		 back to the function call.  */
	      tp->control.step_range_start = tp->control.step_range_end = 1;
	      keep_going (ecs);
	      return;
	    }
	  fill_in_stop_func (gdbarch, ecs);
	  if (stop_pc == ecs->stop_func_start
	      && execution_direction == EXEC_REVERSE)
	    {
	      /* We are stepping over a function call in reverse, and
		 just hit the step-resume breakpoint at the start
		 address of the function.  Go back to single-stepping,
		 which should take us back to the function call.  */
	      ecs->event_thread->stepping_over_breakpoint = 1;
	      keep_going (ecs);
	      return;
	    }
	  break;

	case BPSTAT_WHAT_STOP_NOISY:
	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
	  stop_print_frame = 1;

	  /* We are about to nuke the step_resume_breakpointt via the
	     cleanup chain, so no need to worry about it here.  */

	  stop_stepping (ecs);
	  return;

	case BPSTAT_WHAT_STOP_SILENT:
	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
	  stop_print_frame = 0;

	  /* We are about to nuke the step_resume_breakpoin via the
	     cleanup chain, so no need to worry about it here.  */

	  stop_stepping (ecs);
	  return;

	case BPSTAT_WHAT_HP_STEP_RESUME:
	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");

	  delete_step_resume_breakpoint (ecs->event_thread);
	  if (ecs->event_thread->step_after_step_resume_breakpoint)
	    {
	      /* Back when the step-resume breakpoint was inserted, we
		 were trying to single-step off a breakpoint.  Go back
		 to doing that.  */
	      ecs->event_thread->step_after_step_resume_breakpoint = 0;
	      ecs->event_thread->stepping_over_breakpoint = 1;
	      keep_going (ecs);
	      return;
	    }
	  break;

	case BPSTAT_WHAT_KEEP_CHECKING:
	  break;
	}
    }

  /* We come here if we hit a breakpoint but should not
     stop for it.  Possibly we also were stepping
     and should stop for that.  So fall through and
     test for stepping.  But, if not stepping,
     do not stop.  */

  /* In all-stop mode, if we're currently stepping but have stopped in
     some other thread, we need to switch back to the stepped thread.  */
  if (!non_stop)
    {
      struct thread_info *tp;

      tp = iterate_over_threads (currently_stepping_or_nexting_callback,
				 ecs->event_thread);
      if (tp)
	{
	  /* However, if the current thread is blocked on some internal
	     breakpoint, and we simply need to step over that breakpoint
	     to get it going again, do that first.  */
	  if ((ecs->event_thread->control.trap_expected
	       && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
	      || ecs->event_thread->stepping_over_breakpoint)
	    {
	      keep_going (ecs);
	      return;
	    }

	  /* If the stepping thread exited, then don't try to switch
	     back and resume it, which could fail in several different
	     ways depending on the target.  Instead, just keep going.

	     We can find a stepping dead thread in the thread list in
	     two cases:

	     - The target supports thread exit events, and when the
	     target tries to delete the thread from the thread list,
	     inferior_ptid pointed at the exiting thread.  In such
	     case, calling delete_thread does not really remove the
	     thread from the list; instead, the thread is left listed,
	     with 'exited' state.

	     - The target's debug interface does not support thread
	     exit events, and so we have no idea whatsoever if the
	     previously stepping thread is still alive.  For that
	     reason, we need to synchronously query the target
	     now.  */
	  if (is_exited (tp->ptid)
	      || !target_thread_alive (tp->ptid))
	    {
	      if (debug_infrun)
		fprintf_unfiltered (gdb_stdlog,
				    "infrun: not switching back to "
				    "stepped thread, it has vanished\n");

	      delete_thread (tp->ptid);
	      keep_going (ecs);
	      return;
	    }

	  /* Otherwise, we no longer expect a trap in the current thread.
	     Clear the trap_expected flag before switching back -- this is
	     what keep_going would do as well, if we called it.  */
	  ecs->event_thread->control.trap_expected = 0;

	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: switching back to stepped thread\n");

	  ecs->event_thread = tp;
	  ecs->ptid = tp->ptid;
	  context_switch (ecs->ptid);
	  keep_going (ecs);
	  return;
	}
    }

  if (ecs->event_thread->control.step_resume_breakpoint)
    {
      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog,
			     "infrun: step-resume breakpoint is inserted\n");

      /* Having a step-resume breakpoint overrides anything
         else having to do with stepping commands until
         that breakpoint is reached.  */
      keep_going (ecs);
      return;
    }

  if (ecs->event_thread->control.step_range_end == 0)
    {
      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
      /* Likewise if we aren't even stepping.  */
      keep_going (ecs);
      return;
    }

  /* Re-fetch current thread's frame in case the code above caused
     the frame cache to be re-initialized, making our FRAME variable
     a dangling pointer.  */
  frame = get_current_frame ();
  gdbarch = get_frame_arch (frame);
  fill_in_stop_func (gdbarch, ecs);

  /* If stepping through a line, keep going if still within it.

     Note that step_range_end is the address of the first instruction
     beyond the step range, and NOT the address of the last instruction
     within it!

     Note also that during reverse execution, we may be stepping
     through a function epilogue and therefore must detect when
     the current-frame changes in the middle of a line.  */

  if (stop_pc >= ecs->event_thread->control.step_range_start
      && stop_pc < ecs->event_thread->control.step_range_end
      && (execution_direction != EXEC_REVERSE
	  || frame_id_eq (get_frame_id (frame),
			  ecs->event_thread->control.step_frame_id)))
    {
      if (debug_infrun)
	fprintf_unfiltered
	  (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
	   paddress (gdbarch, ecs->event_thread->control.step_range_start),
	   paddress (gdbarch, ecs->event_thread->control.step_range_end));

      /* When stepping backward, stop at beginning of line range
	 (unless it's the function entry point, in which case
	 keep going back to the call point).  */
      if (stop_pc == ecs->event_thread->control.step_range_start
	  && stop_pc != ecs->stop_func_start
	  && execution_direction == EXEC_REVERSE)
	{
	  ecs->event_thread->control.stop_step = 1;
	  print_end_stepping_range_reason ();
	  stop_stepping (ecs);
	}
      else
	keep_going (ecs);

      return;
    }

  /* We stepped out of the stepping range.  */

  /* If we are stepping at the source level and entered the runtime
     loader dynamic symbol resolution code...

     EXEC_FORWARD: we keep on single stepping until we exit the run
     time loader code and reach the callee's address.

     EXEC_REVERSE: we've already executed the callee (backward), and
     the runtime loader code is handled just like any other
     undebuggable function call.  Now we need only keep stepping
     backward through the trampoline code, and that's handled further
     down, so there is nothing for us to do here.  */

  if (execution_direction != EXEC_REVERSE
      && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
      && in_solib_dynsym_resolve_code (stop_pc))
    {
      CORE_ADDR pc_after_resolver =
	gdbarch_skip_solib_resolver (gdbarch, stop_pc);

      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog,
			     "infrun: stepped into dynsym resolve code\n");

      if (pc_after_resolver)
	{
	  /* Set up a step-resume breakpoint at the address
	     indicated by SKIP_SOLIB_RESOLVER.  */
	  struct symtab_and_line sr_sal;

	  init_sal (&sr_sal);
	  sr_sal.pc = pc_after_resolver;
	  sr_sal.pspace = get_frame_program_space (frame);

	  insert_step_resume_breakpoint_at_sal (gdbarch,
						sr_sal, null_frame_id);
	}

      keep_going (ecs);
      return;
    }

  if (ecs->event_thread->control.step_range_end != 1
      && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
	  || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
      && get_frame_type (frame) == SIGTRAMP_FRAME)
    {
      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog,
			     "infrun: stepped into signal trampoline\n");
      /* The inferior, while doing a "step" or "next", has ended up in
         a signal trampoline (either by a signal being delivered or by
         the signal handler returning).  Just single-step until the
         inferior leaves the trampoline (either by calling the handler
         or returning).  */
      keep_going (ecs);
      return;
    }

  /* If we're in the return path from a shared library trampoline,
     we want to proceed through the trampoline when stepping.  */
  /* macro/2012-04-25: This needs to come before the subroutine
     call check below as on some targets return trampolines look
     like subroutine calls (MIPS16 return thunks).  */
  if (gdbarch_in_solib_return_trampoline (gdbarch,
					  stop_pc, ecs->stop_func_name)
      && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
    {
      /* Determine where this trampoline returns.  */
      CORE_ADDR real_stop_pc;

      real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);

      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog,
			     "infrun: stepped into solib return tramp\n");

      /* Only proceed through if we know where it's going.  */
      if (real_stop_pc)
	{
	  /* And put the step-breakpoint there and go until there.  */
	  struct symtab_and_line sr_sal;

	  init_sal (&sr_sal);	/* initialize to zeroes */
	  sr_sal.pc = real_stop_pc;
	  sr_sal.section = find_pc_overlay (sr_sal.pc);
	  sr_sal.pspace = get_frame_program_space (frame);

	  /* Do not specify what the fp should be when we stop since
	     on some machines the prologue is where the new fp value
	     is established.  */
	  insert_step_resume_breakpoint_at_sal (gdbarch,
						sr_sal, null_frame_id);

	  /* Restart without fiddling with the step ranges or
	     other state.  */
	  keep_going (ecs);
	  return;
	}
    }

  /* Check for subroutine calls.  The check for the current frame
     equalling the step ID is not necessary - the check of the
     previous frame's ID is sufficient - but it is a common case and
     cheaper than checking the previous frame's ID.

     NOTE: frame_id_eq will never report two invalid frame IDs as
     being equal, so to get into this block, both the current and
     previous frame must have valid frame IDs.  */
  /* The outer_frame_id check is a heuristic to detect stepping
     through startup code.  If we step over an instruction which
     sets the stack pointer from an invalid value to a valid value,
     we may detect that as a subroutine call from the mythical
     "outermost" function.  This could be fixed by marking
     outermost frames as !stack_p,code_p,special_p.  Then the
     initial outermost frame, before sp was valid, would
     have code_addr == &_start.  See the comment in frame_id_eq
     for more.  */
  if (!frame_id_eq (get_stack_frame_id (frame),
		    ecs->event_thread->control.step_stack_frame_id)
      && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
		       ecs->event_thread->control.step_stack_frame_id)
	  && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
			    outer_frame_id)
	      || step_start_function != find_pc_function (stop_pc))))
    {
      CORE_ADDR real_stop_pc;

      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");

      if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
	  || ((ecs->event_thread->control.step_range_end == 1)
	      && in_prologue (gdbarch, ecs->event_thread->prev_pc,
			      ecs->stop_func_start)))
	{
	  /* I presume that step_over_calls is only 0 when we're
	     supposed to be stepping at the assembly language level
	     ("stepi").  Just stop.  */
	  /* Also, maybe we just did a "nexti" inside a prolog, so we
	     thought it was a subroutine call but it was not.  Stop as
	     well.  FENN */
	  /* And this works the same backward as frontward.  MVS */
	  ecs->event_thread->control.stop_step = 1;
	  print_end_stepping_range_reason ();
	  stop_stepping (ecs);
	  return;
	}

      /* Reverse stepping through solib trampolines.  */

      if (execution_direction == EXEC_REVERSE
	  && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
	  && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
	      || (ecs->stop_func_start == 0
		  && in_solib_dynsym_resolve_code (stop_pc))))
	{
	  /* Any solib trampoline code can be handled in reverse
	     by simply continuing to single-step.  We have already
	     executed the solib function (backwards), and a few 
	     steps will take us back through the trampoline to the
	     caller.  */
	  keep_going (ecs);
	  return;
	}

      if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
	{
	  /* We're doing a "next".

	     Normal (forward) execution: set a breakpoint at the
	     callee's return address (the address at which the caller
	     will resume).

	     Reverse (backward) execution.  set the step-resume
	     breakpoint at the start of the function that we just
	     stepped into (backwards), and continue to there.  When we
	     get there, we'll need to single-step back to the caller.  */

	  if (execution_direction == EXEC_REVERSE)
	    {
	      /* If we're already at the start of the function, we've either
		 just stepped backward into a single instruction function,
		 or stepped back out of a signal handler to the first instruction
		 of the function.  Just keep going, which will single-step back
		 to the caller.  */
	      if (ecs->stop_func_start != stop_pc)
		{
		  struct symtab_and_line sr_sal;

		  /* Normal function call return (static or dynamic).  */
		  init_sal (&sr_sal);
		  sr_sal.pc = ecs->stop_func_start;
		  sr_sal.pspace = get_frame_program_space (frame);
		  insert_step_resume_breakpoint_at_sal (gdbarch,
							sr_sal, null_frame_id);
		}
	    }
	  else
	    insert_step_resume_breakpoint_at_caller (frame);

	  keep_going (ecs);
	  return;
	}

      /* If we are in a function call trampoline (a stub between the
         calling routine and the real function), locate the real
         function.  That's what tells us (a) whether we want to step
         into it at all, and (b) what prologue we want to run to the
         end of, if we do step into it.  */
      real_stop_pc = skip_language_trampoline (frame, stop_pc);
      if (real_stop_pc == 0)
	real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
      if (real_stop_pc != 0)
	ecs->stop_func_start = real_stop_pc;

      if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
	{
	  struct symtab_and_line sr_sal;

	  init_sal (&sr_sal);
	  sr_sal.pc = ecs->stop_func_start;
	  sr_sal.pspace = get_frame_program_space (frame);

	  insert_step_resume_breakpoint_at_sal (gdbarch,
						sr_sal, null_frame_id);
	  keep_going (ecs);
	  return;
	}

      /* If we have line number information for the function we are
	 thinking of stepping into and the function isn't on the skip
	 list, step into it.

         If there are several symtabs at that PC (e.g. with include
         files), just want to know whether *any* of them have line
         numbers.  find_pc_line handles this.  */
      {
	struct symtab_and_line tmp_sal;

	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
	if (tmp_sal.line != 0
	    && !function_name_is_marked_for_skip (ecs->stop_func_name,
						  &tmp_sal))
	  {
	    if (execution_direction == EXEC_REVERSE)
	      handle_step_into_function_backward (gdbarch, ecs);
	    else
	      handle_step_into_function (gdbarch, ecs);
	    return;
	  }
      }

      /* If we have no line number and the step-stop-if-no-debug is
         set, we stop the step so that the user has a chance to switch
         in assembly mode.  */
      if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
	  && step_stop_if_no_debug)
	{
	  ecs->event_thread->control.stop_step = 1;
	  print_end_stepping_range_reason ();
	  stop_stepping (ecs);
	  return;
	}

      if (execution_direction == EXEC_REVERSE)
	{
	  /* If we're already at the start of the function, we've either just
	     stepped backward into a single instruction function without line
	     number info, or stepped back out of a signal handler to the first
	     instruction of the function without line number info.  Just keep
	     going, which will single-step back to the caller.  */
	  if (ecs->stop_func_start != stop_pc)
	    {
	      /* Set a breakpoint at callee's start address.
		 From there we can step once and be back in the caller.  */
	      struct symtab_and_line sr_sal;

	      init_sal (&sr_sal);
	      sr_sal.pc = ecs->stop_func_start;
	      sr_sal.pspace = get_frame_program_space (frame);
	      insert_step_resume_breakpoint_at_sal (gdbarch,
						    sr_sal, null_frame_id);
	    }
	}
      else
	/* Set a breakpoint at callee's return address (the address
	   at which the caller will resume).  */
	insert_step_resume_breakpoint_at_caller (frame);

      keep_going (ecs);
      return;
    }

  /* Reverse stepping through solib trampolines.  */

  if (execution_direction == EXEC_REVERSE
      && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
    {
      if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
	  || (ecs->stop_func_start == 0
	      && in_solib_dynsym_resolve_code (stop_pc)))
	{
	  /* Any solib trampoline code can be handled in reverse
	     by simply continuing to single-step.  We have already
	     executed the solib function (backwards), and a few 
	     steps will take us back through the trampoline to the
	     caller.  */
	  keep_going (ecs);
	  return;
	}
      else if (in_solib_dynsym_resolve_code (stop_pc))
	{
	  /* Stepped backward into the solib dynsym resolver.
	     Set a breakpoint at its start and continue, then
	     one more step will take us out.  */
	  struct symtab_and_line sr_sal;

	  init_sal (&sr_sal);
	  sr_sal.pc = ecs->stop_func_start;
	  sr_sal.pspace = get_frame_program_space (frame);
	  insert_step_resume_breakpoint_at_sal (gdbarch, 
						sr_sal, null_frame_id);
	  keep_going (ecs);
	  return;
	}
    }

  stop_pc_sal = find_pc_line (stop_pc, 0);

  /* NOTE: tausq/2004-05-24: This if block used to be done before all
     the trampoline processing logic, however, there are some trampolines 
     that have no names, so we should do trampoline handling first.  */
  if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
      && ecs->stop_func_name == NULL
      && stop_pc_sal.line == 0)
    {
      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog,
			     "infrun: stepped into undebuggable function\n");

      /* The inferior just stepped into, or returned to, an
         undebuggable function (where there is no debugging information
         and no line number corresponding to the address where the
         inferior stopped).  Since we want to skip this kind of code,
         we keep going until the inferior returns from this
         function - unless the user has asked us not to (via
         set step-mode) or we no longer know how to get back
         to the call site.  */
      if (step_stop_if_no_debug
	  || !frame_id_p (frame_unwind_caller_id (frame)))
	{
	  /* If we have no line number and the step-stop-if-no-debug
	     is set, we stop the step so that the user has a chance to
	     switch in assembly mode.  */
	  ecs->event_thread->control.stop_step = 1;
	  print_end_stepping_range_reason ();
	  stop_stepping (ecs);
	  return;
	}
      else
	{
	  /* Set a breakpoint at callee's return address (the address
	     at which the caller will resume).  */
	  insert_step_resume_breakpoint_at_caller (frame);
	  keep_going (ecs);
	  return;
	}
    }

  if (ecs->event_thread->control.step_range_end == 1)
    {
      /* It is stepi or nexti.  We always want to stop stepping after
         one instruction.  */
      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
      ecs->event_thread->control.stop_step = 1;
      print_end_stepping_range_reason ();
      stop_stepping (ecs);
      return;
    }

  if (stop_pc_sal.line == 0)
    {
      /* We have no line number information.  That means to stop
         stepping (does this always happen right after one instruction,
         when we do "s" in a function with no line numbers,
         or can this happen as a result of a return or longjmp?).  */
      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
      ecs->event_thread->control.stop_step = 1;
      print_end_stepping_range_reason ();
      stop_stepping (ecs);
      return;
    }

  /* Look for "calls" to inlined functions, part one.  If the inline
     frame machinery detected some skipped call sites, we have entered
     a new inline function.  */

  if (frame_id_eq (get_frame_id (get_current_frame ()),
		   ecs->event_thread->control.step_frame_id)
      && inline_skipped_frames (ecs->ptid))
    {
      struct symtab_and_line call_sal;

      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog,
			    "infrun: stepped into inlined function\n");

      find_frame_sal (get_current_frame (), &call_sal);

      if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
	{
	  /* For "step", we're going to stop.  But if the call site
	     for this inlined function is on the same source line as
	     we were previously stepping, go down into the function
	     first.  Otherwise stop at the call site.  */

	  if (call_sal.line == ecs->event_thread->current_line
	      && call_sal.symtab == ecs->event_thread->current_symtab)
	    step_into_inline_frame (ecs->ptid);

	  ecs->event_thread->control.stop_step = 1;
	  print_end_stepping_range_reason ();
	  stop_stepping (ecs);
	  return;
	}
      else
	{
	  /* For "next", we should stop at the call site if it is on a
	     different source line.  Otherwise continue through the
	     inlined function.  */
	  if (call_sal.line == ecs->event_thread->current_line
	      && call_sal.symtab == ecs->event_thread->current_symtab)
	    keep_going (ecs);
	  else
	    {
	      ecs->event_thread->control.stop_step = 1;
	      print_end_stepping_range_reason ();
	      stop_stepping (ecs);
	    }
	  return;
	}
    }

  /* Look for "calls" to inlined functions, part two.  If we are still
     in the same real function we were stepping through, but we have
     to go further up to find the exact frame ID, we are stepping
     through a more inlined call beyond its call site.  */

  if (get_frame_type (get_current_frame ()) == INLINE_FRAME
      && !frame_id_eq (get_frame_id (get_current_frame ()),
		       ecs->event_thread->control.step_frame_id)
      && stepped_in_from (get_current_frame (),
			  ecs->event_thread->control.step_frame_id))
    {
      if (debug_infrun)
	fprintf_unfiltered (gdb_stdlog,
			    "infrun: stepping through inlined function\n");

      if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
	keep_going (ecs);
      else
	{
	  ecs->event_thread->control.stop_step = 1;
	  print_end_stepping_range_reason ();
	  stop_stepping (ecs);
	}
      return;
    }

  if ((stop_pc == stop_pc_sal.pc)
      && (ecs->event_thread->current_line != stop_pc_sal.line
 	  || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
    {
      /* We are at the start of a different line.  So stop.  Note that
         we don't stop if we step into the middle of a different line.
         That is said to make things like for (;;) statements work
         better.  */
      if (debug_infrun)
	 fprintf_unfiltered (gdb_stdlog,
			     "infrun: stepped to a different line\n");
      ecs->event_thread->control.stop_step = 1;
      print_end_stepping_range_reason ();
      stop_stepping (ecs);
      return;
    }

  /* We aren't done stepping.

     Optimize by setting the stepping range to the line.
     (We might not be in the original line, but if we entered a
     new line in mid-statement, we continue stepping.  This makes
     things like for(;;) statements work better.)  */

  ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
  ecs->event_thread->control.step_range_end = stop_pc_sal.end;
  set_step_info (frame, stop_pc_sal);

  if (debug_infrun)
     fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
  keep_going (ecs);
}

/* Is thread TP in the middle of single-stepping?  */

static int
currently_stepping (struct thread_info *tp)
{
  return ((tp->control.step_range_end
	   && tp->control.step_resume_breakpoint == NULL)
	  || tp->control.trap_expected
	  || bpstat_should_step ());
}

/* Returns true if any thread *but* the one passed in "data" is in the
   middle of stepping or of handling a "next".  */

static int
currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
{
  if (tp == data)
    return 0;

  return (tp->control.step_range_end
 	  || tp->control.trap_expected);
}

/* Inferior has stepped into a subroutine call with source code that
   we should not step over.  Do step to the first line of code in
   it.  */

static void
handle_step_into_function (struct gdbarch *gdbarch,
			   struct execution_control_state *ecs)
{
  struct symtab *s;
  struct symtab_and_line stop_func_sal, sr_sal;

  fill_in_stop_func (gdbarch, ecs);

  s = find_pc_symtab (stop_pc);
  if (s && s->language != language_asm)
    ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
						  ecs->stop_func_start);

  stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
  /* Use the step_resume_break to step until the end of the prologue,
     even if that involves jumps (as it seems to on the vax under
     4.2).  */
  /* If the prologue ends in the middle of a source line, continue to
     the end of that source line (if it is still within the function).
     Otherwise, just go to end of prologue.  */
  if (stop_func_sal.end
      && stop_func_sal.pc != ecs->stop_func_start
      && stop_func_sal.end < ecs->stop_func_end)
    ecs->stop_func_start = stop_func_sal.end;

  /* Architectures which require breakpoint adjustment might not be able
     to place a breakpoint at the computed address.  If so, the test
     ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
     ecs->stop_func_start to an address at which a breakpoint may be
     legitimately placed.

     Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
     made, GDB will enter an infinite loop when stepping through
     optimized code consisting of VLIW instructions which contain
     subinstructions corresponding to different source lines.  On
     FR-V, it's not permitted to place a breakpoint on any but the
     first subinstruction of a VLIW instruction.  When a breakpoint is
     set, GDB will adjust the breakpoint address to the beginning of
     the VLIW instruction.  Thus, we need to make the corresponding
     adjustment here when computing the stop address.  */

  if (gdbarch_adjust_breakpoint_address_p (gdbarch))
    {
      ecs->stop_func_start
	= gdbarch_adjust_breakpoint_address (gdbarch,
					     ecs->stop_func_start);
    }

  if (ecs->stop_func_start == stop_pc)
    {
      /* We are already there: stop now.  */
      ecs->event_thread->control.stop_step = 1;
      print_end_stepping_range_reason ();
      stop_stepping (ecs);
      return;
    }
  else
    {
      /* Put the step-breakpoint there and go until there.  */
      init_sal (&sr_sal);	/* initialize to zeroes */
      sr_sal.pc = ecs->stop_func_start;
      sr_sal.section = find_pc_overlay (ecs->stop_func_start);
      sr_sal.pspace = get_frame_program_space (get_current_frame ());

      /* Do not specify what the fp should be when we stop since on
         some machines the prologue is where the new fp value is
         established.  */
      insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);

      /* And make sure stepping stops right away then.  */
      ecs->event_thread->control.step_range_end
        = ecs->event_thread->control.step_range_start;
    }
  keep_going (ecs);
}

/* Inferior has stepped backward into a subroutine call with source
   code that we should not step over.  Do step to the beginning of the
   last line of code in it.  */

static void
handle_step_into_function_backward (struct gdbarch *gdbarch,
				    struct execution_control_state *ecs)
{
  struct symtab *s;
  struct symtab_and_line stop_func_sal;

  fill_in_stop_func (gdbarch, ecs);

  s = find_pc_symtab (stop_pc);
  if (s && s->language != language_asm)
    ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
						  ecs->stop_func_start);

  stop_func_sal = find_pc_line (stop_pc, 0);

  /* OK, we're just going to keep stepping here.  */
  if (stop_func_sal.pc == stop_pc)
    {
      /* We're there already.  Just stop stepping now.  */
      ecs->event_thread->control.stop_step = 1;
      print_end_stepping_range_reason ();
      stop_stepping (ecs);
    }
  else
    {
      /* Else just reset the step range and keep going.
	 No step-resume breakpoint, they don't work for
	 epilogues, which can have multiple entry paths.  */
      ecs->event_thread->control.step_range_start = stop_func_sal.pc;
      ecs->event_thread->control.step_range_end = stop_func_sal.end;
      keep_going (ecs);
    }
  return;
}

/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
   This is used to both functions and to skip over code.  */

static void
insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
					struct symtab_and_line sr_sal,
					struct frame_id sr_id,
					enum bptype sr_type)
{
  /* There should never be more than one step-resume or longjmp-resume
     breakpoint per thread, so we should never be setting a new
     step_resume_breakpoint when one is already active.  */
  gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
  gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);

  if (debug_infrun)
    fprintf_unfiltered (gdb_stdlog,
			"infrun: inserting step-resume breakpoint at %s\n",
			paddress (gdbarch, sr_sal.pc));

  inferior_thread ()->control.step_resume_breakpoint
    = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
}

void
insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
				      struct symtab_and_line sr_sal,
				      struct frame_id sr_id)
{
  insert_step_resume_breakpoint_at_sal_1 (gdbarch,
					  sr_sal, sr_id,
					  bp_step_resume);
}

/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
   This is used to skip a potential signal handler.

   This is called with the interrupted function's frame.  The signal
   handler, when it returns, will resume the interrupted function at
   RETURN_FRAME.pc.  */

static void
insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
{
  struct symtab_and_line sr_sal;
  struct gdbarch *gdbarch;

  gdb_assert (return_frame != NULL);
  init_sal (&sr_sal);		/* initialize to zeros */

  gdbarch = get_frame_arch (return_frame);
  sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
  sr_sal.section = find_pc_overlay (sr_sal.pc);
  sr_sal.pspace = get_frame_program_space (return_frame);

  insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
					  get_stack_frame_id (return_frame),
					  bp_hp_step_resume);
}

/* Insert a "step-resume breakpoint" at the previous frame's PC.  This
   is used to skip a function after stepping into it (for "next" or if
   the called function has no debugging information).

   The current function has almost always been reached by single
   stepping a call or return instruction.  NEXT_FRAME belongs to the
   current function, and the breakpoint will be set at the caller's
   resume address.

   This is a separate function rather than reusing
   insert_hp_step_resume_breakpoint_at_frame in order to avoid
   get_prev_frame, which may stop prematurely (see the implementation
   of frame_unwind_caller_id for an example).  */

static void
insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
{
  struct symtab_and_line sr_sal;
  struct gdbarch *gdbarch;

  /* We shouldn't have gotten here if we don't know where the call site
     is.  */
  gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));

  init_sal (&sr_sal);		/* initialize to zeros */

  gdbarch = frame_unwind_caller_arch (next_frame);
  sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
					frame_unwind_caller_pc (next_frame));
  sr_sal.section = find_pc_overlay (sr_sal.pc);
  sr_sal.pspace = frame_unwind_program_space (next_frame);

  insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
					frame_unwind_caller_id (next_frame));
}

/* Insert a "longjmp-resume" breakpoint at PC.  This is used to set a
   new breakpoint at the target of a jmp_buf.  The handling of
   longjmp-resume uses the same mechanisms used for handling
   "step-resume" breakpoints.  */

static void
insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  /* There should never be more than one longjmp-resume breakpoint per
     thread, so we should never be setting a new
     longjmp_resume_breakpoint when one is already active.  */
  gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);

  if (debug_infrun)
    fprintf_unfiltered (gdb_stdlog,
			"infrun: inserting longjmp-resume breakpoint at %s\n",
			paddress (gdbarch, pc));

  inferior_thread ()->control.exception_resume_breakpoint =
    set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
}

/* Insert an exception resume breakpoint.  TP is the thread throwing
   the exception.  The block B is the block of the unwinder debug hook
   function.  FRAME is the frame corresponding to the call to this
   function.  SYM is the symbol of the function argument holding the
   target PC of the exception.  */

static void
insert_exception_resume_breakpoint (struct thread_info *tp,
				    struct block *b,
				    struct frame_info *frame,
				    struct symbol *sym)
{
  volatile struct gdb_exception e;

  /* We want to ignore errors here.  */
  TRY_CATCH (e, RETURN_MASK_ERROR)
    {
      struct symbol *vsym;
      struct value *value;
      CORE_ADDR handler;
      struct breakpoint *bp;

      vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
      value = read_var_value (vsym, frame);
      /* If the value was optimized out, revert to the old behavior.  */
      if (! value_optimized_out (value))
	{
	  handler = value_as_address (value);

	  if (debug_infrun)
	    fprintf_unfiltered (gdb_stdlog,
				"infrun: exception resume at %lx\n",
				(unsigned long) handler);

	  bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
					       handler, bp_exception_resume);

	  /* set_momentary_breakpoint_at_pc invalidates FRAME.  */
	  frame = NULL;

	  bp->thread = tp->num;
	  inferior_thread ()->control.exception_resume_breakpoint = bp;
	}
    }
}

/* A helper for check_exception_resume that sets an
   exception-breakpoint based on a SystemTap probe.  */

static void
insert_exception_resume_from_probe (struct thread_info *tp,
				    const struct probe *probe,
				    struct frame_info *frame)
{
  struct value *arg_value;
  CORE_ADDR handler;
  struct breakpoint *bp;

  arg_value = probe_safe_evaluate_at_pc (frame, 1);
  if (!arg_value)
    return;

  handler = value_as_address (arg_value);

  if (debug_infrun)
    fprintf_unfiltered (gdb_stdlog,
			"infrun: exception resume at %s\n",
			paddress (get_objfile_arch (probe->objfile),
				  handler));

  bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
				       handler, bp_exception_resume);
  bp->thread = tp->num;
  inferior_thread ()->control.exception_resume_breakpoint = bp;
}

/* This is called when an exception has been intercepted.  Check to
   see whether the exception's destination is of interest, and if so,
   set an exception resume breakpoint there.  */

static void
check_exception_resume (struct execution_control_state *ecs,
			struct frame_info *frame)
{
  volatile struct gdb_exception e;
  const struct probe *probe;
  struct symbol *func;

  /* First see if this exception unwinding breakpoint was set via a
     SystemTap probe point.  If so, the probe has two arguments: the
     CFA and the HANDLER.  We ignore the CFA, extract the handler, and
     set a breakpoint there.  */
  probe = find_probe_by_pc (get_frame_pc (frame));
  if (probe)
    {
      insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
      return;
    }

  func = get_frame_function (frame);
  if (!func)
    return;

  TRY_CATCH (e, RETURN_MASK_ERROR)
    {
      struct block *b;
      struct block_iterator iter;
      struct symbol *sym;
      int argno = 0;

      /* The exception breakpoint is a thread-specific breakpoint on
	 the unwinder's debug hook, declared as:
	 
	 void _Unwind_DebugHook (void *cfa, void *handler);
	 
	 The CFA argument indicates the frame to which control is
	 about to be transferred.  HANDLER is the destination PC.
	 
	 We ignore the CFA and set a temporary breakpoint at HANDLER.
	 This is not extremely efficient but it avoids issues in gdb
	 with computing the DWARF CFA, and it also works even in weird
	 cases such as throwing an exception from inside a signal
	 handler.  */

      b = SYMBOL_BLOCK_VALUE (func);
      ALL_BLOCK_SYMBOLS (b, iter, sym)
	{
	  if (!SYMBOL_IS_ARGUMENT (sym))
	    continue;

	  if (argno == 0)
	    ++argno;
	  else
	    {
	      insert_exception_resume_breakpoint (ecs->event_thread,
						  b, frame, sym);
	      break;
	    }
	}
    }
}

static void
stop_stepping (struct execution_control_state *ecs)
{
  if (debug_infrun)
    fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");

  /* Let callers know we don't want to wait for the inferior anymore.  */
  ecs->wait_some_more = 0;
}

/* This function handles various cases where we need to continue
   waiting for the inferior.  */
/* (Used to be the keep_going: label in the old wait_for_inferior).  */

static void
keep_going (struct execution_control_state *ecs)
{
  /* Make sure normal_stop is called if we get a QUIT handled before
     reaching resume.  */
  struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);

  /* Save the pc before execution, to compare with pc after stop.  */
  ecs->event_thread->prev_pc
    = regcache_read_pc (get_thread_regcache (ecs->ptid));

  /* If we did not do break;, it means we should keep running the
     inferior and not return to debugger.  */

  if (ecs->event_thread->control.trap_expected
      && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
    {
      /* We took a signal (which we are supposed to pass through to
	 the inferior, else we'd not get here) and we haven't yet
	 gotten our trap.  Simply continue.  */

      discard_cleanups (old_cleanups);
      resume (currently_stepping (ecs->event_thread),
	      ecs->event_thread->suspend.stop_signal);
    }
  else
    {
      /* Either the trap was not expected, but we are continuing
         anyway (the user asked that this signal be passed to the
         child)
         -- or --
         The signal was SIGTRAP, e.g. it was our signal, but we
         decided we should resume from it.

         We're going to run this baby now!  

	 Note that insert_breakpoints won't try to re-insert
	 already inserted breakpoints.  Therefore, we don't
	 care if breakpoints were already inserted, or not.  */
      
      if (ecs->event_thread->stepping_over_breakpoint)
	{
	  struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);

	  if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
	    /* Since we can't do a displaced step, we have to remove
	       the breakpoint while we step it.  To keep things
	       simple, we remove them all.  */
	    remove_breakpoints ();
	}
      else
	{
	  volatile struct gdb_exception e;

	  /* Stop stepping when inserting breakpoints
	     has failed.  */
	  TRY_CATCH (e, RETURN_MASK_ERROR)
	    {
	      insert_breakpoints ();
	    }
	  if (e.reason < 0)
	    {
	      exception_print (gdb_stderr, e);
	      stop_stepping (ecs);
	      return;
	    }
	}

      ecs->event_thread->control.trap_expected
	= ecs->event_thread->stepping_over_breakpoint;

      /* Do not deliver SIGNAL_TRAP (except when the user explicitly
         specifies that such a signal should be delivered to the
         target program).

         Typically, this would occure when a user is debugging a
         target monitor on a simulator: the target monitor sets a
         breakpoint; the simulator encounters this break-point and
         halts the simulation handing control to GDB; GDB, noteing
         that the break-point isn't valid, returns control back to the
         simulator; the simulator then delivers the hardware
         equivalent of a SIGNAL_TRAP to the program being debugged.  */

      if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
	  && !signal_program[ecs->event_thread->suspend.stop_signal])
	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;

      discard_cleanups (old_cleanups);
      resume (currently_stepping (ecs->event_thread),
	      ecs->event_thread->suspend.stop_signal);
    }

  prepare_to_wait (ecs);
}

/* This function normally comes after a resume, before
   handle_inferior_event exits.  It takes care of any last bits of
   housekeeping, and sets the all-important wait_some_more flag.  */

static void
prepare_to_wait (struct execution_control_state *ecs)
{
  if (debug_infrun)
    fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");

  /* This is the old end of the while loop.  Let everybody know we
     want to wait for the inferior some more and get called again
     soon.  */
  ecs->wait_some_more = 1;
}

/* Several print_*_reason functions to print why the inferior has stopped.
   We always print something when the inferior exits, or receives a signal.
   The rest of the cases are dealt with later on in normal_stop and
   print_it_typical.  Ideally there should be a call to one of these
   print_*_reason functions functions from handle_inferior_event each time
   stop_stepping is called.  */

/* Print why the inferior has stopped.  
   We are done with a step/next/si/ni command, print why the inferior has
   stopped.  For now print nothing.  Print a message only if not in the middle
   of doing a "step n" operation for n > 1.  */

static void
print_end_stepping_range_reason (void)
{
  if ((!inferior_thread ()->step_multi
       || !inferior_thread ()->control.stop_step)
      && ui_out_is_mi_like_p (current_uiout))
    ui_out_field_string (current_uiout, "reason",
                         async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
}

/* The inferior was terminated by a signal, print why it stopped.  */

static void
print_signal_exited_reason (enum gdb_signal siggnal)
{
  struct ui_out *uiout = current_uiout;

  annotate_signalled ();
  if (ui_out_is_mi_like_p (uiout))
    ui_out_field_string
      (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
  ui_out_text (uiout, "\nProgram terminated with signal ");
  annotate_signal_name ();
  ui_out_field_string (uiout, "signal-name",
		       gdb_signal_to_name (siggnal));
  annotate_signal_name_end ();
  ui_out_text (uiout, ", ");
  annotate_signal_string ();
  ui_out_field_string (uiout, "signal-meaning",
		       gdb_signal_to_string (siggnal));
  annotate_signal_string_end ();
  ui_out_text (uiout, ".\n");
  ui_out_text (uiout, "The program no longer exists.\n");
}

/* The inferior program is finished, print why it stopped.  */

static void
print_exited_reason (int exitstatus)
{
  struct inferior *inf = current_inferior ();
  const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
  struct ui_out *uiout = current_uiout;

  annotate_exited (exitstatus);
  if (exitstatus)
    {
      if (ui_out_is_mi_like_p (uiout))
	ui_out_field_string (uiout, "reason", 
			     async_reason_lookup (EXEC_ASYNC_EXITED));
      ui_out_text (uiout, "[Inferior ");
      ui_out_text (uiout, plongest (inf->num));
      ui_out_text (uiout, " (");
      ui_out_text (uiout, pidstr);
      ui_out_text (uiout, ") exited with code ");
      ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
      ui_out_text (uiout, "]\n");
    }
  else
    {
      if (ui_out_is_mi_like_p (uiout))
	ui_out_field_string
	  (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
      ui_out_text (uiout, "[Inferior ");
      ui_out_text (uiout, plongest (inf->num));
      ui_out_text (uiout, " (");
      ui_out_text (uiout, pidstr);
      ui_out_text (uiout, ") exited normally]\n");
    }
  /* Support the --return-child-result option.  */
  return_child_result_value = exitstatus;
}

/* Signal received, print why the inferior has stopped.  The signal table
   tells us to print about it.  */

static void
print_signal_received_reason (enum gdb_signal siggnal)
{
  struct ui_out *uiout = current_uiout;

  annotate_signal ();

  if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
    {
      struct thread_info *t = inferior_thread ();

      ui_out_text (uiout, "\n[");
      ui_out_field_string (uiout, "thread-name",
			   target_pid_to_str (t->ptid));
      ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
      ui_out_text (uiout, " stopped");
    }
  else
    {
      ui_out_text (uiout, "\nProgram received signal ");
      annotate_signal_name ();
      if (ui_out_is_mi_like_p (uiout))
	ui_out_field_string
	  (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
      ui_out_field_string (uiout, "signal-name",
			   gdb_signal_to_name (siggnal));
      annotate_signal_name_end ();
      ui_out_text (uiout, ", ");
      annotate_signal_string ();
      ui_out_field_string (uiout, "signal-meaning",
			   gdb_signal_to_string (siggnal));
      annotate_signal_string_end ();
    }
  ui_out_text (uiout, ".\n");
}

/* Reverse execution: target ran out of history info, print why the inferior
   has stopped.  */

static void
print_no_history_reason (void)
{
  ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
}

/* Here to return control to GDB when the inferior stops for real.
   Print appropriate messages, remove breakpoints, give terminal our modes.

   STOP_PRINT_FRAME nonzero means print the executing frame
   (pc, function, args, file, line number and line text).
   BREAKPOINTS_FAILED nonzero means stop was due to error
   attempting to insert breakpoints.  */

void
normal_stop (void)
{
  struct target_waitstatus last;
  ptid_t last_ptid;
  struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);

  get_last_target_status (&last_ptid, &last);

  /* If an exception is thrown from this point on, make sure to
     propagate GDB's knowledge of the executing state to the
     frontend/user running state.  A QUIT is an easy exception to see
     here, so do this before any filtered output.  */
  if (!non_stop)
    make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
  else if (last.kind != TARGET_WAITKIND_SIGNALLED
	   && last.kind != TARGET_WAITKIND_EXITED
	   && last.kind != TARGET_WAITKIND_NO_RESUMED)
    make_cleanup (finish_thread_state_cleanup, &inferior_ptid);

  /* In non-stop mode, we don't want GDB to switch threads behind the
     user's back, to avoid races where the user is typing a command to
     apply to thread x, but GDB switches to thread y before the user
     finishes entering the command.  */

  /* As with the notification of thread events, we want to delay
     notifying the user that we've switched thread context until
     the inferior actually stops.

     There's no point in saying anything if the inferior has exited.
     Note that SIGNALLED here means "exited with a signal", not
     "received a signal".  */
  if (!non_stop
      && !ptid_equal (previous_inferior_ptid, inferior_ptid)
      && target_has_execution
      && last.kind != TARGET_WAITKIND_SIGNALLED
      && last.kind != TARGET_WAITKIND_EXITED
      && last.kind != TARGET_WAITKIND_NO_RESUMED)
    {
      target_terminal_ours_for_output ();
      printf_filtered (_("[Switching to %s]\n"),
		       target_pid_to_str (inferior_ptid));
      annotate_thread_changed ();
      previous_inferior_ptid = inferior_ptid;
    }

  if (last.kind == TARGET_WAITKIND_NO_RESUMED)
    {
      gdb_assert (sync_execution || !target_can_async_p ());

      target_terminal_ours_for_output ();
      printf_filtered (_("No unwaited-for children left.\n"));
    }

  if (!breakpoints_always_inserted_mode () && target_has_execution)
    {
      if (remove_breakpoints ())
	{
	  target_terminal_ours_for_output ();
	  printf_filtered (_("Cannot remove breakpoints because "
			     "program is no longer writable.\nFurther "
			     "execution is probably impossible.\n"));
	}
    }

  /* If an auto-display called a function and that got a signal,
     delete that auto-display to avoid an infinite recursion.  */

  if (stopped_by_random_signal)
    disable_current_display ();

  /* Don't print a message if in the middle of doing a "step n"
     operation for n > 1 */
  if (target_has_execution
      && last.kind != TARGET_WAITKIND_SIGNALLED
      && last.kind != TARGET_WAITKIND_EXITED
      && inferior_thread ()->step_multi
      && inferior_thread ()->control.stop_step)
    goto done;

  target_terminal_ours ();
  async_enable_stdin ();

  /* Set the current source location.  This will also happen if we
     display the frame below, but the current SAL will be incorrect
     during a user hook-stop function.  */
  if (has_stack_frames () && !stop_stack_dummy)
    set_current_sal_from_frame (get_current_frame (), 1);

  /* Let the user/frontend see the threads as stopped.  */
  do_cleanups (old_chain);

  /* Look up the hook_stop and run it (CLI internally handles problem
     of stop_command's pre-hook not existing).  */
  if (stop_command)
    catch_errors (hook_stop_stub, stop_command,
		  "Error while running hook_stop:\n", RETURN_MASK_ALL);

  if (!has_stack_frames ())
    goto done;

  if (last.kind == TARGET_WAITKIND_SIGNALLED
      || last.kind == TARGET_WAITKIND_EXITED)
    goto done;

  /* Select innermost stack frame - i.e., current frame is frame 0,
     and current location is based on that.
     Don't do this on return from a stack dummy routine,
     or if the program has exited.  */

  if (!stop_stack_dummy)
    {
      select_frame (get_current_frame ());

      /* Print current location without a level number, if
         we have changed functions or hit a breakpoint.
         Print source line if we have one.
         bpstat_print() contains the logic deciding in detail
         what to print, based on the event(s) that just occurred.  */

      /* If --batch-silent is enabled then there's no need to print the current
	 source location, and to try risks causing an error message about
	 missing source files.  */
      if (stop_print_frame && !batch_silent)
	{
	  int bpstat_ret;
	  int source_flag;
	  int do_frame_printing = 1;
	  struct thread_info *tp = inferior_thread ();

	  bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
	  switch (bpstat_ret)
	    {
	    case PRINT_UNKNOWN:
	      /* FIXME: cagney/2002-12-01: Given that a frame ID does
	         (or should) carry around the function and does (or
	         should) use that when doing a frame comparison.  */
	      if (tp->control.stop_step
		  && frame_id_eq (tp->control.step_frame_id,
				  get_frame_id (get_current_frame ()))
		  && step_start_function == find_pc_function (stop_pc))
		source_flag = SRC_LINE;		/* Finished step, just
						   print source line.  */
	      else
		source_flag = SRC_AND_LOC;	/* Print location and
						   source line.  */
	      break;
	    case PRINT_SRC_AND_LOC:
	      source_flag = SRC_AND_LOC;	/* Print location and
						   source line.  */
	      break;
	    case PRINT_SRC_ONLY:
	      source_flag = SRC_LINE;
	      break;
	    case PRINT_NOTHING:
	      source_flag = SRC_LINE;	/* something bogus */
	      do_frame_printing = 0;
	      break;
	    default:
	      internal_error (__FILE__, __LINE__, _("Unknown value."));
	    }

	  /* The behavior of this routine with respect to the source
	     flag is:
	     SRC_LINE: Print only source line
	     LOCATION: Print only location
	     SRC_AND_LOC: Print location and source line.  */
	  if (do_frame_printing)
	    print_stack_frame (get_selected_frame (NULL), 0, source_flag);

	  /* Display the auto-display expressions.  */
	  do_displays ();
	}
    }

  /* Save the function value return registers, if we care.
     We might be about to restore their previous contents.  */
  if (inferior_thread ()->control.proceed_to_finish
      && execution_direction != EXEC_REVERSE)
    {
      /* This should not be necessary.  */
      if (stop_registers)
	regcache_xfree (stop_registers);

      /* NB: The copy goes through to the target picking up the value of
	 all the registers.  */
      stop_registers = regcache_dup (get_current_regcache ());
    }

  if (stop_stack_dummy == STOP_STACK_DUMMY)
    {
      /* Pop the empty frame that contains the stack dummy.
	 This also restores inferior state prior to the call
	 (struct infcall_suspend_state).  */
      struct frame_info *frame = get_current_frame ();

      gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
      frame_pop (frame);
      /* frame_pop() calls reinit_frame_cache as the last thing it
	 does which means there's currently no selected frame.  We
	 don't need to re-establish a selected frame if the dummy call
	 returns normally, that will be done by
	 restore_infcall_control_state.  However, we do have to handle
	 the case where the dummy call is returning after being
	 stopped (e.g. the dummy call previously hit a breakpoint).
	 We can't know which case we have so just always re-establish
	 a selected frame here.  */
      select_frame (get_current_frame ());
    }

done:
  annotate_stopped ();

  /* Suppress the stop observer if we're in the middle of:

     - a step n (n > 1), as there still more steps to be done.

     - a "finish" command, as the observer will be called in
       finish_command_continuation, so it can include the inferior
       function's return value.

     - calling an inferior function, as we pretend we inferior didn't
       run at all.  The return value of the call is handled by the
       expression evaluator, through call_function_by_hand.  */

  if (!target_has_execution
      || last.kind == TARGET_WAITKIND_SIGNALLED
      || last.kind == TARGET_WAITKIND_EXITED
      || last.kind == TARGET_WAITKIND_NO_RESUMED
      || (!(inferior_thread ()->step_multi
	    && inferior_thread ()->control.stop_step)
	  && !(inferior_thread ()->control.stop_bpstat
	       && inferior_thread ()->control.proceed_to_finish)
	  && !inferior_thread ()->control.in_infcall))
    {
      if (!ptid_equal (inferior_ptid, null_ptid))
	observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
				     stop_print_frame);
      else
	observer_notify_normal_stop (NULL, stop_print_frame);
    }

  if (target_has_execution)
    {
      if (last.kind != TARGET_WAITKIND_SIGNALLED
	  && last.kind != TARGET_WAITKIND_EXITED)
	/* Delete the breakpoint we stopped at, if it wants to be deleted.
	   Delete any breakpoint that is to be deleted at the next stop.  */
	breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
    }

  /* Try to get rid of automatically added inferiors that are no
     longer needed.  Keeping those around slows down things linearly.
     Note that this never removes the current inferior.  */
  prune_inferiors ();
}

static int
hook_stop_stub (void *cmd)
{
  execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
  return (0);
}

int
signal_stop_state (int signo)
{
  return signal_stop[signo];
}

int
signal_print_state (int signo)
{
  return signal_print[signo];
}

int
signal_pass_state (int signo)
{
  return signal_program[signo];
}

static void
signal_cache_update (int signo)
{
  if (signo == -1)
    {
      for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
	signal_cache_update (signo);

      return;
    }

  signal_pass[signo] = (signal_stop[signo] == 0
			&& signal_print[signo] == 0
			&& signal_program[signo] == 1
			&& signal_catch[signo] == 0);
}

int
signal_stop_update (int signo, int state)
{
  int ret = signal_stop[signo];

  signal_stop[signo] = state;
  signal_cache_update (signo);
  return ret;
}

int
signal_print_update (int signo, int state)
{
  int ret = signal_print[signo];

  signal_print[signo] = state;
  signal_cache_update (signo);
  return ret;
}

int
signal_pass_update (int signo, int state)
{
  int ret = signal_program[signo];

  signal_program[signo] = state;
  signal_cache_update (signo);
  return ret;
}

/* Update the global 'signal_catch' from INFO and notify the
   target.  */

void
signal_catch_update (const unsigned int *info)
{
  int i;

  for (i = 0; i < GDB_SIGNAL_LAST; ++i)
    signal_catch[i] = info[i] > 0;
  signal_cache_update (-1);
  target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
}

static void
sig_print_header (void)
{
  printf_filtered (_("Signal        Stop\tPrint\tPass "
		     "to program\tDescription\n"));
}

static void
sig_print_info (enum gdb_signal oursig)
{
  const char *name = gdb_signal_to_name (oursig);
  int name_padding = 13 - strlen (name);

  if (name_padding <= 0)
    name_padding = 0;

  printf_filtered ("%s", name);
  printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
  printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
  printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
  printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
  printf_filtered ("%s\n", gdb_signal_to_string (oursig));
}

/* Specify how various signals in the inferior should be handled.  */

static void
handle_command (char *args, int from_tty)
{
  char **argv;
  int digits, wordlen;
  int sigfirst, signum, siglast;
  enum gdb_signal oursig;
  int allsigs;
  int nsigs;
  unsigned char *sigs;
  struct cleanup *old_chain;

  if (args == NULL)
    {
      error_no_arg (_("signal to handle"));
    }

  /* Allocate and zero an array of flags for which signals to handle.  */

  nsigs = (int) GDB_SIGNAL_LAST;
  sigs = (unsigned char *) alloca (nsigs);
  memset (sigs, 0, nsigs);

  /* Break the command line up into args.  */

  argv = gdb_buildargv (args);
  old_chain = make_cleanup_freeargv (argv);

  /* Walk through the args, looking for signal oursigs, signal names, and
     actions.  Signal numbers and signal names may be interspersed with
     actions, with the actions being performed for all signals cumulatively
     specified.  Signal ranges can be specified as <LOW>-<HIGH>.  */

  while (*argv != NULL)
    {
      wordlen = strlen (*argv);
      for (digits = 0; isdigit ((*argv)[digits]); digits++)
	{;
	}
      allsigs = 0;
      sigfirst = siglast = -1;

      if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
	{
	  /* Apply action to all signals except those used by the
	     debugger.  Silently skip those.  */
	  allsigs = 1;
	  sigfirst = 0;
	  siglast = nsigs - 1;
	}
      else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
	{
	  SET_SIGS (nsigs, sigs, signal_stop);
	  SET_SIGS (nsigs, sigs, signal_print);
	}
      else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
	{
	  UNSET_SIGS (nsigs, sigs, signal_program);
	}
      else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
	{
	  SET_SIGS (nsigs, sigs, signal_print);
	}
      else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
	{
	  SET_SIGS (nsigs, sigs, signal_program);
	}
      else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
	{
	  UNSET_SIGS (nsigs, sigs, signal_stop);
	}
      else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
	{
	  SET_SIGS (nsigs, sigs, signal_program);
	}
      else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
	{
	  UNSET_SIGS (nsigs, sigs, signal_print);
	  UNSET_SIGS (nsigs, sigs, signal_stop);
	}
      else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
	{
	  UNSET_SIGS (nsigs, sigs, signal_program);
	}
      else if (digits > 0)
	{
	  /* It is numeric.  The numeric signal refers to our own
	     internal signal numbering from target.h, not to host/target
	     signal  number.  This is a feature; users really should be
	     using symbolic names anyway, and the common ones like
	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */

	  sigfirst = siglast = (int)
	    gdb_signal_from_command (atoi (*argv));
	  if ((*argv)[digits] == '-')
	    {
	      siglast = (int)
		gdb_signal_from_command (atoi ((*argv) + digits + 1));
	    }
	  if (sigfirst > siglast)
	    {
	      /* Bet he didn't figure we'd think of this case...  */
	      signum = sigfirst;
	      sigfirst = siglast;
	      siglast = signum;
	    }
	}
      else
	{
	  oursig = gdb_signal_from_name (*argv);
	  if (oursig != GDB_SIGNAL_UNKNOWN)
	    {
	      sigfirst = siglast = (int) oursig;
	    }
	  else
	    {
	      /* Not a number and not a recognized flag word => complain.  */
	      error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
	    }
	}

      /* If any signal numbers or symbol names were found, set flags for
         which signals to apply actions to.  */

      for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
	{
	  switch ((enum gdb_signal) signum)
	    {
	    case GDB_SIGNAL_TRAP:
	    case GDB_SIGNAL_INT:
	      if (!allsigs && !sigs[signum])
		{
		  if (query (_("%s is used by the debugger.\n\
Are you sure you want to change it? "),
			     gdb_signal_to_name ((enum gdb_signal) signum)))
		    {
		      sigs[signum] = 1;
		    }
		  else
		    {
		      printf_unfiltered (_("Not confirmed, unchanged.\n"));
		      gdb_flush (gdb_stdout);
		    }
		}
	      break;
	    case GDB_SIGNAL_0:
	    case GDB_SIGNAL_DEFAULT:
	    case GDB_SIGNAL_UNKNOWN:
	      /* Make sure that "all" doesn't print these.  */
	      break;
	    default:
	      sigs[signum] = 1;
	      break;
	    }
	}

      argv++;
    }

  for (signum = 0; signum < nsigs; signum++)
    if (sigs[signum])
      {
	signal_cache_update (-1);
	target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
	target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);

	if (from_tty)
	  {
	    /* Show the results.  */
	    sig_print_header ();
	    for (; signum < nsigs; signum++)
	      if (sigs[signum])
		sig_print_info (signum);
	  }

	break;
      }

  do_cleanups (old_chain);
}

/* Complete the "handle" command.  */

static VEC (char_ptr) *
handle_completer (struct cmd_list_element *ignore,
		  const char *text, const char *word)
{
  VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
  static const char * const keywords[] =
    {
      "all",
      "stop",
      "ignore",
      "print",
      "pass",
      "nostop",
      "noignore",
      "noprint",
      "nopass",
      NULL,
    };

  vec_signals = signal_completer (ignore, text, word);
  vec_keywords = complete_on_enum (keywords, word, word);

  return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
  VEC_free (char_ptr, vec_signals);
  VEC_free (char_ptr, vec_keywords);
  return return_val;
}

static void
xdb_handle_command (char *args, int from_tty)
{
  char **argv;
  struct cleanup *old_chain;

  if (args == NULL)
    error_no_arg (_("xdb command"));

  /* Break the command line up into args.  */

  argv = gdb_buildargv (args);
  old_chain = make_cleanup_freeargv (argv);
  if (argv[1] != (char *) NULL)
    {
      char *argBuf;
      int bufLen;

      bufLen = strlen (argv[0]) + 20;
      argBuf = (char *) xmalloc (bufLen);
      if (argBuf)
	{
	  int validFlag = 1;
	  enum gdb_signal oursig;

	  oursig = gdb_signal_from_name (argv[0]);
	  memset (argBuf, 0, bufLen);
	  if (strcmp (argv[1], "Q") == 0)
	    sprintf (argBuf, "%s %s", argv[0], "noprint");
	  else
	    {
	      if (strcmp (argv[1], "s") == 0)
		{
		  if (!signal_stop[oursig])
		    sprintf (argBuf, "%s %s", argv[0], "stop");
		  else
		    sprintf (argBuf, "%s %s", argv[0], "nostop");
		}
	      else if (strcmp (argv[1], "i") == 0)
		{
		  if (!signal_program[oursig])
		    sprintf (argBuf, "%s %s", argv[0], "pass");
		  else
		    sprintf (argBuf, "%s %s", argv[0], "nopass");
		}
	      else if (strcmp (argv[1], "r") == 0)
		{
		  if (!signal_print[oursig])
		    sprintf (argBuf, "%s %s", argv[0], "print");
		  else
		    sprintf (argBuf, "%s %s", argv[0], "noprint");
		}
	      else
		validFlag = 0;
	    }
	  if (validFlag)
	    handle_command (argBuf, from_tty);
	  else
	    printf_filtered (_("Invalid signal handling flag.\n"));
	  if (argBuf)
	    xfree (argBuf);
	}
    }
  do_cleanups (old_chain);
}

enum gdb_signal
gdb_signal_from_command (int num)
{
  if (num >= 1 && num <= 15)
    return (enum gdb_signal) num;
  error (_("Only signals 1-15 are valid as numeric signals.\n\
Use \"info signals\" for a list of symbolic signals."));
}

/* Print current contents of the tables set by the handle command.
   It is possible we should just be printing signals actually used
   by the current target (but for things to work right when switching
   targets, all signals should be in the signal tables).  */

static void
signals_info (char *signum_exp, int from_tty)
{
  enum gdb_signal oursig;

  sig_print_header ();

  if (signum_exp)
    {
      /* First see if this is a symbol name.  */
      oursig = gdb_signal_from_name (signum_exp);
      if (oursig == GDB_SIGNAL_UNKNOWN)
	{
	  /* No, try numeric.  */
	  oursig =
	    gdb_signal_from_command (parse_and_eval_long (signum_exp));
	}
      sig_print_info (oursig);
      return;
    }

  printf_filtered ("\n");
  /* These ugly casts brought to you by the native VAX compiler.  */
  for (oursig = GDB_SIGNAL_FIRST;
       (int) oursig < (int) GDB_SIGNAL_LAST;
       oursig = (enum gdb_signal) ((int) oursig + 1))
    {
      QUIT;

      if (oursig != GDB_SIGNAL_UNKNOWN
	  && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
	sig_print_info (oursig);
    }

  printf_filtered (_("\nUse the \"handle\" command "
		     "to change these tables.\n"));
}

/* Check if it makes sense to read $_siginfo from the current thread
   at this point.  If not, throw an error.  */

static void
validate_siginfo_access (void)
{
  /* No current inferior, no siginfo.  */
  if (ptid_equal (inferior_ptid, null_ptid))
    error (_("No thread selected."));

  /* Don't try to read from a dead thread.  */
  if (is_exited (inferior_ptid))
    error (_("The current thread has terminated"));

  /* ... or from a spinning thread.  */
  if (is_running (inferior_ptid))
    error (_("Selected thread is running."));
}

/* The $_siginfo convenience variable is a bit special.  We don't know
   for sure the type of the value until we actually have a chance to
   fetch the data.  The type can change depending on gdbarch, so it is
   also dependent on which thread you have selected.

     1. making $_siginfo be an internalvar that creates a new value on
     access.

     2. making the value of $_siginfo be an lval_computed value.  */

/* This function implements the lval_computed support for reading a
   $_siginfo value.  */

static void
siginfo_value_read (struct value *v)
{
  LONGEST transferred;

  validate_siginfo_access ();

  transferred =
    target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
		 NULL,
		 value_contents_all_raw (v),
		 value_offset (v),
		 TYPE_LENGTH (value_type (v)));

  if (transferred != TYPE_LENGTH (value_type (v)))
    error (_("Unable to read siginfo"));
}

/* This function implements the lval_computed support for writing a
   $_siginfo value.  */

static void
siginfo_value_write (struct value *v, struct value *fromval)
{
  LONGEST transferred;

  validate_siginfo_access ();

  transferred = target_write (&current_target,
			      TARGET_OBJECT_SIGNAL_INFO,
			      NULL,
			      value_contents_all_raw (fromval),
			      value_offset (v),
			      TYPE_LENGTH (value_type (fromval)));

  if (transferred != TYPE_LENGTH (value_type (fromval)))
    error (_("Unable to write siginfo"));
}

static const struct lval_funcs siginfo_value_funcs =
  {
    siginfo_value_read,
    siginfo_value_write
  };

/* Return a new value with the correct type for the siginfo object of
   the current thread using architecture GDBARCH.  Return a void value
   if there's no object available.  */

static struct value *
siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
		    void *ignore)
{
  if (target_has_stack
      && !ptid_equal (inferior_ptid, null_ptid)
      && gdbarch_get_siginfo_type_p (gdbarch))
    {
      struct type *type = gdbarch_get_siginfo_type (gdbarch);

      return allocate_computed_value (type, &siginfo_value_funcs, NULL);
    }

  return allocate_value (builtin_type (gdbarch)->builtin_void);
}


/* infcall_suspend_state contains state about the program itself like its
   registers and any signal it received when it last stopped.
   This state must be restored regardless of how the inferior function call
   ends (either successfully, or after it hits a breakpoint or signal)
   if the program is to properly continue where it left off.  */

struct infcall_suspend_state
{
  struct thread_suspend_state thread_suspend;
#if 0 /* Currently unused and empty structures are not valid C.  */
  struct inferior_suspend_state inferior_suspend;
#endif

  /* Other fields:  */
  CORE_ADDR stop_pc;
  struct regcache *registers;

  /* Format of SIGINFO_DATA or NULL if it is not present.  */
  struct gdbarch *siginfo_gdbarch;

  /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
     TYPE_LENGTH (gdbarch_get_siginfo_type ()).  For different gdbarch the
     content would be invalid.  */
  gdb_byte *siginfo_data;
};

struct infcall_suspend_state *
save_infcall_suspend_state (void)
{
  struct infcall_suspend_state *inf_state;
  struct thread_info *tp = inferior_thread ();
#if 0
  struct inferior *inf = current_inferior ();
#endif
  struct regcache *regcache = get_current_regcache ();
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  gdb_byte *siginfo_data = NULL;

  if (gdbarch_get_siginfo_type_p (gdbarch))
    {
      struct type *type = gdbarch_get_siginfo_type (gdbarch);
      size_t len = TYPE_LENGTH (type);
      struct cleanup *back_to;

      siginfo_data = xmalloc (len);
      back_to = make_cleanup (xfree, siginfo_data);

      if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
		       siginfo_data, 0, len) == len)
	discard_cleanups (back_to);
      else
	{
	  /* Errors ignored.  */
	  do_cleanups (back_to);
	  siginfo_data = NULL;
	}
    }

  inf_state = XZALLOC (struct infcall_suspend_state);

  if (siginfo_data)
    {
      inf_state->siginfo_gdbarch = gdbarch;
      inf_state->siginfo_data = siginfo_data;
    }

  inf_state->thread_suspend = tp->suspend;
#if 0 /* Currently unused and empty structures are not valid C.  */
  inf_state->inferior_suspend = inf->suspend;
#endif

  /* run_inferior_call will not use the signal due to its `proceed' call with
     GDB_SIGNAL_0 anyway.  */
  tp->suspend.stop_signal = GDB_SIGNAL_0;

  inf_state->stop_pc = stop_pc;

  inf_state->registers = regcache_dup (regcache);

  return inf_state;
}

/* Restore inferior session state to INF_STATE.  */

void
restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
{
  struct thread_info *tp = inferior_thread ();
#if 0
  struct inferior *inf = current_inferior ();
#endif
  struct regcache *regcache = get_current_regcache ();
  struct gdbarch *gdbarch = get_regcache_arch (regcache);

  tp->suspend = inf_state->thread_suspend;
#if 0 /* Currently unused and empty structures are not valid C.  */
  inf->suspend = inf_state->inferior_suspend;
#endif

  stop_pc = inf_state->stop_pc;

  if (inf_state->siginfo_gdbarch == gdbarch)
    {
      struct type *type = gdbarch_get_siginfo_type (gdbarch);

      /* Errors ignored.  */
      target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
		    inf_state->siginfo_data, 0, TYPE_LENGTH (type));
    }

  /* The inferior can be gone if the user types "print exit(0)"
     (and perhaps other times).  */
  if (target_has_execution)
    /* NB: The register write goes through to the target.  */
    regcache_cpy (regcache, inf_state->registers);

  discard_infcall_suspend_state (inf_state);
}

static void
do_restore_infcall_suspend_state_cleanup (void *state)
{
  restore_infcall_suspend_state (state);
}

struct cleanup *
make_cleanup_restore_infcall_suspend_state
  (struct infcall_suspend_state *inf_state)
{
  return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
}

void
discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
{
  regcache_xfree (inf_state->registers);
  xfree (inf_state->siginfo_data);
  xfree (inf_state);
}

struct regcache *
get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
{
  return inf_state->registers;
}

/* infcall_control_state contains state regarding gdb's control of the
   inferior itself like stepping control.  It also contains session state like
   the user's currently selected frame.  */

struct infcall_control_state
{
  struct thread_control_state thread_control;
  struct inferior_control_state inferior_control;

  /* Other fields:  */
  enum stop_stack_kind stop_stack_dummy;
  int stopped_by_random_signal;
  int stop_after_trap;

  /* ID if the selected frame when the inferior function call was made.  */
  struct frame_id selected_frame_id;
};

/* Save all of the information associated with the inferior<==>gdb
   connection.  */

struct infcall_control_state *
save_infcall_control_state (void)
{
  struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
  struct thread_info *tp = inferior_thread ();
  struct inferior *inf = current_inferior ();

  inf_status->thread_control = tp->control;
  inf_status->inferior_control = inf->control;

  tp->control.step_resume_breakpoint = NULL;
  tp->control.exception_resume_breakpoint = NULL;

  /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
     chain.  If caller's caller is walking the chain, they'll be happier if we
     hand them back the original chain when restore_infcall_control_state is
     called.  */
  tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);

  /* Other fields:  */
  inf_status->stop_stack_dummy = stop_stack_dummy;
  inf_status->stopped_by_random_signal = stopped_by_random_signal;
  inf_status->stop_after_trap = stop_after_trap;

  inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));

  return inf_status;
}

static int
restore_selected_frame (void *args)
{
  struct frame_id *fid = (struct frame_id *) args;
  struct frame_info *frame;

  frame = frame_find_by_id (*fid);

  /* If inf_status->selected_frame_id is NULL, there was no previously
     selected frame.  */
  if (frame == NULL)
    {
      warning (_("Unable to restore previously selected frame."));
      return 0;
    }

  select_frame (frame);

  return (1);
}

/* Restore inferior session state to INF_STATUS.  */

void
restore_infcall_control_state (struct infcall_control_state *inf_status)
{
  struct thread_info *tp = inferior_thread ();
  struct inferior *inf = current_inferior ();

  if (tp->control.step_resume_breakpoint)
    tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;

  if (tp->control.exception_resume_breakpoint)
    tp->control.exception_resume_breakpoint->disposition
      = disp_del_at_next_stop;

  /* Handle the bpstat_copy of the chain.  */
  bpstat_clear (&tp->control.stop_bpstat);

  tp->control = inf_status->thread_control;
  inf->control = inf_status->inferior_control;

  /* Other fields:  */
  stop_stack_dummy = inf_status->stop_stack_dummy;
  stopped_by_random_signal = inf_status->stopped_by_random_signal;
  stop_after_trap = inf_status->stop_after_trap;

  if (target_has_stack)
    {
      /* The point of catch_errors is that if the stack is clobbered,
         walking the stack might encounter a garbage pointer and
         error() trying to dereference it.  */
      if (catch_errors
	  (restore_selected_frame, &inf_status->selected_frame_id,
	   "Unable to restore previously selected frame:\n",
	   RETURN_MASK_ERROR) == 0)
	/* Error in restoring the selected frame.  Select the innermost
	   frame.  */
	select_frame (get_current_frame ());
    }

  xfree (inf_status);
}

static void
do_restore_infcall_control_state_cleanup (void *sts)
{
  restore_infcall_control_state (sts);
}

struct cleanup *
make_cleanup_restore_infcall_control_state
  (struct infcall_control_state *inf_status)
{
  return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
}

void
discard_infcall_control_state (struct infcall_control_state *inf_status)
{
  if (inf_status->thread_control.step_resume_breakpoint)
    inf_status->thread_control.step_resume_breakpoint->disposition
      = disp_del_at_next_stop;

  if (inf_status->thread_control.exception_resume_breakpoint)
    inf_status->thread_control.exception_resume_breakpoint->disposition
      = disp_del_at_next_stop;

  /* See save_infcall_control_state for info on stop_bpstat.  */
  bpstat_clear (&inf_status->thread_control.stop_bpstat);

  xfree (inf_status);
}

int
ptid_match (ptid_t ptid, ptid_t filter)
{
  if (ptid_equal (filter, minus_one_ptid))
    return 1;
  if (ptid_is_pid (filter)
      && ptid_get_pid (ptid) == ptid_get_pid (filter))
    return 1;
  else if (ptid_equal (ptid, filter))
    return 1;

  return 0;
}

/* restore_inferior_ptid() will be used by the cleanup machinery
   to restore the inferior_ptid value saved in a call to
   save_inferior_ptid().  */

static void
restore_inferior_ptid (void *arg)
{
  ptid_t *saved_ptid_ptr = arg;

  inferior_ptid = *saved_ptid_ptr;
  xfree (arg);
}

/* Save the value of inferior_ptid so that it may be restored by a
   later call to do_cleanups().  Returns the struct cleanup pointer
   needed for later doing the cleanup.  */

struct cleanup *
save_inferior_ptid (void)
{
  ptid_t *saved_ptid_ptr;

  saved_ptid_ptr = xmalloc (sizeof (ptid_t));
  *saved_ptid_ptr = inferior_ptid;
  return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
}


/* User interface for reverse debugging:
   Set exec-direction / show exec-direction commands
   (returns error unless target implements to_set_exec_direction method).  */

int execution_direction = EXEC_FORWARD;
static const char exec_forward[] = "forward";
static const char exec_reverse[] = "reverse";
static const char *exec_direction = exec_forward;
static const char *const exec_direction_names[] = {
  exec_forward,
  exec_reverse,
  NULL
};

static void
set_exec_direction_func (char *args, int from_tty,
			 struct cmd_list_element *cmd)
{
  if (target_can_execute_reverse)
    {
      if (!strcmp (exec_direction, exec_forward))
	execution_direction = EXEC_FORWARD;
      else if (!strcmp (exec_direction, exec_reverse))
	execution_direction = EXEC_REVERSE;
    }
  else
    {
      exec_direction = exec_forward;
      error (_("Target does not support this operation."));
    }
}

static void
show_exec_direction_func (struct ui_file *out, int from_tty,
			  struct cmd_list_element *cmd, const char *value)
{
  switch (execution_direction) {
  case EXEC_FORWARD:
    fprintf_filtered (out, _("Forward.\n"));
    break;
  case EXEC_REVERSE:
    fprintf_filtered (out, _("Reverse.\n"));
    break;
  default:
    internal_error (__FILE__, __LINE__,
		    _("bogus execution_direction value: %d"),
		    (int) execution_direction);
  }
}

/* User interface for non-stop mode.  */

int non_stop = 0;

static void
set_non_stop (char *args, int from_tty,
	      struct cmd_list_element *c)
{
  if (target_has_execution)
    {
      non_stop_1 = non_stop;
      error (_("Cannot change this setting while the inferior is running."));
    }

  non_stop = non_stop_1;
}

static void
show_non_stop (struct ui_file *file, int from_tty,
	       struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Controlling the inferior in non-stop mode is %s.\n"),
		    value);
}

static void
show_schedule_multiple (struct ui_file *file, int from_tty,
			struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Resuming the execution of threads "
			    "of all processes is %s.\n"), value);
}

/* Implementation of `siginfo' variable.  */

static const struct internalvar_funcs siginfo_funcs =
{
  siginfo_make_value,
  NULL,
  NULL
};

void
_initialize_infrun (void)
{
  int i;
  int numsigs;
  struct cmd_list_element *c;

  add_info ("signals", signals_info, _("\
What debugger does when program gets various signals.\n\
Specify a signal as argument to print info on that signal only."));
  add_info_alias ("handle", "signals", 0);

  c = add_com ("handle", class_run, handle_command, _("\
Specify how to handle signals.\n\
Usage: handle SIGNAL [ACTIONS]\n\
Args are signals and actions to apply to those signals.\n\
If no actions are specified, the current settings for the specified signals\n\
will be displayed instead.\n\
\n\
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
from 1-15 are allowed for compatibility with old versions of GDB.\n\
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
The special arg \"all\" is recognized to mean all signals except those\n\
used by the debugger, typically SIGTRAP and SIGINT.\n\
\n\
Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
Stop means reenter debugger if this signal happens (implies print).\n\
Print means print a message if this signal happens.\n\
Pass means let program see this signal; otherwise program doesn't know.\n\
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
Pass and Stop may be combined.\n\
\n\
Multiple signals may be specified.  Signal numbers and signal names\n\
may be interspersed with actions, with the actions being performed for\n\
all signals cumulatively specified."));
  set_cmd_completer (c, handle_completer);

  if (xdb_commands)
    {
      add_com ("lz", class_info, signals_info, _("\
What debugger does when program gets various signals.\n\
Specify a signal as argument to print info on that signal only."));
      add_com ("z", class_run, xdb_handle_command, _("\
Specify how to handle a signal.\n\
Args are signals and actions to apply to those signals.\n\
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
from 1-15 are allowed for compatibility with old versions of GDB.\n\
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
The special arg \"all\" is recognized to mean all signals except those\n\
used by the debugger, typically SIGTRAP and SIGINT.\n\
Recognized actions include \"s\" (toggles between stop and nostop),\n\
\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
nopass), \"Q\" (noprint)\n\
Stop means reenter debugger if this signal happens (implies print).\n\
Print means print a message if this signal happens.\n\
Pass means let program see this signal; otherwise program doesn't know.\n\
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
Pass and Stop may be combined."));
    }

  if (!dbx_commands)
    stop_command = add_cmd ("stop", class_obscure,
			    not_just_help_class_command, _("\
There is no `stop' command, but you can set a hook on `stop'.\n\
This allows you to set a list of commands to be run each time execution\n\
of the program stops."), &cmdlist);

  add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
Set inferior debugging."), _("\
Show inferior debugging."), _("\
When non-zero, inferior specific debugging is enabled."),
			     NULL,
			     show_debug_infrun,
			     &setdebuglist, &showdebuglist);

  add_setshow_boolean_cmd ("displaced", class_maintenance,
			   &debug_displaced, _("\
Set displaced stepping debugging."), _("\
Show displaced stepping debugging."), _("\
When non-zero, displaced stepping specific debugging is enabled."),
			    NULL,
			    show_debug_displaced,
			    &setdebuglist, &showdebuglist);

  add_setshow_boolean_cmd ("non-stop", no_class,
			   &non_stop_1, _("\
Set whether gdb controls the inferior in non-stop mode."), _("\
Show whether gdb controls the inferior in non-stop mode."), _("\
When debugging a multi-threaded program and this setting is\n\
off (the default, also called all-stop mode), when one thread stops\n\
(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
all other threads in the program while you interact with the thread of\n\
interest.  When you continue or step a thread, you can allow the other\n\
threads to run, or have them remain stopped, but while you inspect any\n\
thread's state, all threads stop.\n\
\n\
In non-stop mode, when one thread stops, other threads can continue\n\
to run freely.  You'll be able to step each thread independently,\n\
leave it stopped or free to run as needed."),
			   set_non_stop,
			   show_non_stop,
			   &setlist,
			   &showlist);

  numsigs = (int) GDB_SIGNAL_LAST;
  signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
  signal_print = (unsigned char *)
    xmalloc (sizeof (signal_print[0]) * numsigs);
  signal_program = (unsigned char *)
    xmalloc (sizeof (signal_program[0]) * numsigs);
  signal_catch = (unsigned char *)
    xmalloc (sizeof (signal_catch[0]) * numsigs);
  signal_pass = (unsigned char *)
    xmalloc (sizeof (signal_program[0]) * numsigs);
  for (i = 0; i < numsigs; i++)
    {
      signal_stop[i] = 1;
      signal_print[i] = 1;
      signal_program[i] = 1;
      signal_catch[i] = 0;
    }

  /* Signals caused by debugger's own actions
     should not be given to the program afterwards.  */
  signal_program[GDB_SIGNAL_TRAP] = 0;
  signal_program[GDB_SIGNAL_INT] = 0;

  /* Signals that are not errors should not normally enter the debugger.  */
  signal_stop[GDB_SIGNAL_ALRM] = 0;
  signal_print[GDB_SIGNAL_ALRM] = 0;
  signal_stop[GDB_SIGNAL_VTALRM] = 0;
  signal_print[GDB_SIGNAL_VTALRM] = 0;
  signal_stop[GDB_SIGNAL_PROF] = 0;
  signal_print[GDB_SIGNAL_PROF] = 0;
  signal_stop[GDB_SIGNAL_CHLD] = 0;
  signal_print[GDB_SIGNAL_CHLD] = 0;
  signal_stop[GDB_SIGNAL_IO] = 0;
  signal_print[GDB_SIGNAL_IO] = 0;
  signal_stop[GDB_SIGNAL_POLL] = 0;
  signal_print[GDB_SIGNAL_POLL] = 0;
  signal_stop[GDB_SIGNAL_URG] = 0;
  signal_print[GDB_SIGNAL_URG] = 0;
  signal_stop[GDB_SIGNAL_WINCH] = 0;
  signal_print[GDB_SIGNAL_WINCH] = 0;
  signal_stop[GDB_SIGNAL_PRIO] = 0;
  signal_print[GDB_SIGNAL_PRIO] = 0;

  /* These signals are used internally by user-level thread
     implementations.  (See signal(5) on Solaris.)  Like the above
     signals, a healthy program receives and handles them as part of
     its normal operation.  */
  signal_stop[GDB_SIGNAL_LWP] = 0;
  signal_print[GDB_SIGNAL_LWP] = 0;
  signal_stop[GDB_SIGNAL_WAITING] = 0;
  signal_print[GDB_SIGNAL_WAITING] = 0;
  signal_stop[GDB_SIGNAL_CANCEL] = 0;
  signal_print[GDB_SIGNAL_CANCEL] = 0;

  /* Update cached state.  */
  signal_cache_update (-1);

  add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
			    &stop_on_solib_events, _("\
Set stopping for shared library events."), _("\
Show stopping for shared library events."), _("\
If nonzero, gdb will give control to the user when the dynamic linker\n\
notifies gdb of shared library events.  The most common event of interest\n\
to the user would be loading/unloading of a new library."),
			    NULL,
			    show_stop_on_solib_events,
			    &setlist, &showlist);

  add_setshow_enum_cmd ("follow-fork-mode", class_run,
			follow_fork_mode_kind_names,
			&follow_fork_mode_string, _("\
Set debugger response to a program call of fork or vfork."), _("\
Show debugger response to a program call of fork or vfork."), _("\
A fork or vfork creates a new process.  follow-fork-mode can be:\n\
  parent  - the original process is debugged after a fork\n\
  child   - the new process is debugged after a fork\n\
The unfollowed process will continue to run.\n\
By default, the debugger will follow the parent process."),
			NULL,
			show_follow_fork_mode_string,
			&setlist, &showlist);

  add_setshow_enum_cmd ("follow-exec-mode", class_run,
			follow_exec_mode_names,
			&follow_exec_mode_string, _("\
Set debugger response to a program call of exec."), _("\
Show debugger response to a program call of exec."), _("\
An exec call replaces the program image of a process.\n\
\n\
follow-exec-mode can be:\n\
\n\
  new - the debugger creates a new inferior and rebinds the process\n\
to this new inferior.  The program the process was running before\n\
the exec call can be restarted afterwards by restarting the original\n\
inferior.\n\
\n\
  same - the debugger keeps the process bound to the same inferior.\n\
The new executable image replaces the previous executable loaded in\n\
the inferior.  Restarting the inferior after the exec call restarts\n\
the executable the process was running after the exec call.\n\
\n\
By default, the debugger will use the same inferior."),
			NULL,
			show_follow_exec_mode_string,
			&setlist, &showlist);

  add_setshow_enum_cmd ("scheduler-locking", class_run, 
			scheduler_enums, &scheduler_mode, _("\
Set mode for locking scheduler during execution."), _("\
Show mode for locking scheduler during execution."), _("\
off  == no locking (threads may preempt at any time)\n\
on   == full locking (no thread except the current thread may run)\n\
step == scheduler locked during every single-step operation.\n\
	In this mode, no other thread may run during a step command.\n\
	Other threads may run while stepping over a function call ('next')."), 
			set_schedlock_func,	/* traps on target vector */
			show_scheduler_mode,
			&setlist, &showlist);

  add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
Set mode for resuming threads of all processes."), _("\
Show mode for resuming threads of all processes."), _("\
When on, execution commands (such as 'continue' or 'next') resume all\n\
threads of all processes.  When off (which is the default), execution\n\
commands only resume the threads of the current process.  The set of\n\
threads that are resumed is further refined by the scheduler-locking\n\
mode (see help set scheduler-locking)."),
			   NULL,
			   show_schedule_multiple,
			   &setlist, &showlist);

  add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
Set mode of the step operation."), _("\
Show mode of the step operation."), _("\
When set, doing a step over a function without debug line information\n\
will stop at the first instruction of that function. Otherwise, the\n\
function is skipped and the step command stops at a different source line."),
			   NULL,
			   show_step_stop_if_no_debug,
			   &setlist, &showlist);

  add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
				&can_use_displaced_stepping, _("\
Set debugger's willingness to use displaced stepping."), _("\
Show debugger's willingness to use displaced stepping."), _("\
If on, gdb will use displaced stepping to step over breakpoints if it is\n\
supported by the target architecture.  If off, gdb will not use displaced\n\
stepping to step over breakpoints, even if such is supported by the target\n\
architecture.  If auto (which is the default), gdb will use displaced stepping\n\
if the target architecture supports it and non-stop mode is active, but will not\n\
use it in all-stop mode (see help set non-stop)."),
				NULL,
				show_can_use_displaced_stepping,
				&setlist, &showlist);

  add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
			&exec_direction, _("Set direction of execution.\n\
Options are 'forward' or 'reverse'."),
			_("Show direction of execution (forward/reverse)."),
			_("Tells gdb whether to execute forward or backward."),
			set_exec_direction_func, show_exec_direction_func,
			&setlist, &showlist);

  /* Set/show detach-on-fork: user-settable mode.  */

  add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
Set whether gdb will detach the child of a fork."), _("\
Show whether gdb will detach the child of a fork."), _("\
Tells gdb whether to detach the child of a fork."),
			   NULL, NULL, &setlist, &showlist);

  /* Set/show disable address space randomization mode.  */

  add_setshow_boolean_cmd ("disable-randomization", class_support,
			   &disable_randomization, _("\
Set disabling of debuggee's virtual address space randomization."), _("\
Show disabling of debuggee's virtual address space randomization."), _("\
When this mode is on (which is the default), randomization of the virtual\n\
address space is disabled.  Standalone programs run with the randomization\n\
enabled by default on some platforms."),
			   &set_disable_randomization,
			   &show_disable_randomization,
			   &setlist, &showlist);

  /* ptid initializations */
  inferior_ptid = null_ptid;
  target_last_wait_ptid = minus_one_ptid;

  observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
  observer_attach_thread_stop_requested (infrun_thread_stop_requested);
  observer_attach_thread_exit (infrun_thread_thread_exit);
  observer_attach_inferior_exit (infrun_inferior_exit);

  /* Explicitly create without lookup, since that tries to create a
     value with a void typed value, and when we get here, gdbarch
     isn't initialized yet.  At this point, we're quite sure there
     isn't another convenience variable of the same name.  */
  create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);

  add_setshow_boolean_cmd ("observer", no_class,
			   &observer_mode_1, _("\
Set whether gdb controls the inferior in observer mode."), _("\
Show whether gdb controls the inferior in observer mode."), _("\
In observer mode, GDB can get data from the inferior, but not\n\
affect its execution.  Registers and memory may not be changed,\n\
breakpoints may not be set, and the program cannot be interrupted\n\
or signalled."),
			   set_observer_mode,
			   show_observer_mode,
			   &setlist,
			   &showlist);
}